
for p a prime, Z∗

p is cyclic

To establish the result of the title, we need three facts. First:

Fermat’s Little Theorem: If p is prime and (a, p) = 1, then p|ap−1−1 (i.e., ap−1 ≡p 1).

Main ingredients:

(1) If p is prime, (a, p) = 1, and ab ≡p ac, then b ≡p c

[multiply both sides by a−1]

(2) If (a, n) = 1 and (b, n) = 1 , then (ab, n) = 1

[multiply the equations 1 = ax+ ny and 1 = bz + nw together and collect multiples of n
together]

Then to prove FLT, look at N = (p− 1)!ap−1 = (1 · a)(2 · a) · · · ((p− 1) · a) .

If we show that N ≡p (p − 1)!, then since ((p − 1)!, p) = 1 (by (2) and induction),
we have ap−1 ≡p 1 by (1). But, again by (1), if xa ≡p ya then x ≡p y, so each of
1 · a, 2 · a, . . . , (p − 1) · a are distinct, mod p. That is, this list is the same, mod p,
as 1, 2, . . . , p − 1, except for possibly being written in a different order. But then the
products of the two lists are the same (mod p), as desired.

FLT tells us that ap−1 ≡ 1 (mod p) is always true, when p is prime. In the language of
groups, this means that the order of any a ∈ Z

∗

p with a 6= 0 has order dividing p−1 = |Z∗

p|
. To establish that Z∗

p is cyclic, we need to show that at least one of them has order equal
to p− 1. In order to show this, we need a bit more machinery:

Lagrange’s (other) Theorem: If f(x) is a polynomial with integer coefficients, of degree n,
and p is prime, then the equation f(x) ≡ 0 (mod p) has at most n mutually incongruent
solutions, unless f(x) ≡ 0 (mod p) for all x.

To see this, do what you would do if you were proving this for real or complex roots; given a
solution a, write f(x) = (x−a)g(x)+r with r=constant (where we understand this equation
to have coefficients in Zp) using polynomial long division. This makes sense because Zp is
a field, so division by non-zero elements works fine. Then 0 = f(a) = (a− a)g(a) + r = r

means r = 0 in Zp, so f(x) = (x − a)g(x) with g(x) a polynomial with degree n − 1 .
Structuring this as an induction argument, we can then assume that g(x) has at most
n− 1 roots, so f has at most (a and the roots of g, so) n roots, because, since p is prime,
if f(b) = (b− a)g(b) ≡ 0 (mod p), then either b− a ≡ 0 (so a and b are congruent mod p),
or g(b) = 0, so b is among the roots of g. [This is because p|xy and p prime implies that
p|x or p|y.]

This in turn leads us to

Corollary: If p is prime and d is a factor of p−1 (i,e, d|p−1), then the equation xd−1 ≡ 0
(mod p) has exactly d solutions mod p.

This is because, writing p − 1 = ds, f(x) = xp−1 − 1 ≡ 0 has exactly p − 1 solutions
(namely, 1 through p− 1), and

xp−1 − 1 == (xd − 1)(xd(s−1) + xd(s−2) + · · ·+ xd + 1) = (xd − 1)g(x) .

1



But g(x) has at most d(s − 1) = (p − 1) − d roots, and xd − 1 has at most d roots, and
together (since p is prime) they make up the p− 1 roots of f . So in order to have enough,
they both must have exactly that many roots.

To finish our proof that for p prime, there must be an a with ordp(a) = p−1 : we introduce
the notation pk||N , which means that pk|N but pk+1 6 |N .

For each prime pi dividing p− 1, 1 ≤ i ≤ s, we let pki

i ||p− 1 . So p− 1 = pk1

1 · · · pkr
r . Then:

the equation (*) xp
ki
i ≡ 1 (mod p) has pki

i solutions, while

(†) xp
ki−1

i ≡ 1 (mod p) has only pki−1
i < pki

i solutions.

Pick a solution, ai, to (*) which is not a solution to (†) . [In particular, ordn(ai) = pki

i ,

since if it were smaller, it would have to divide pki−1
i , which, by our choice of ai, it doesn’t!]

Then set a = a1 · · ·ar . Then a computation yields that, mod p, (a1 · · ·ar)
k = ak1 · · ·a

k
r ,

and a
p−1

pi

j ≡p 1 for j 6= i, since p
kj

j | p−1
pi

. This implies that

a
p−1

pi ≡ a
p−1

pi

i 6≡ 1,

since otherwise ordp(ai)|
p− 1

pi
, and so ordp(ai)| gcd(p

ki

i ,
p− 1

pi
) = pki−1

i , a contradiction.

So pki

i ||ordn(a) for every i, so p− 1|ordp(a), so ordp(a) = p− 1.

Actually finding a primitive root a for Z
∗

p is a much more challenging task than proving
one exists! The above procedure will do it, but you need to completely factor p−1 in order
to find the ai and then assemble the resulting product a. In practice, if you can factor

p− 1 completely, what one really does is start with a = 2, and compute a
p−1

pi (mod p) for
every prime factor pi of p − 1. If the result is never 1, then we know that the order or a

is p − 1 and so Z
∗

p = 〈a〉 . In practice it doesn’t require too many attempts with (small)
numbers relatively prime to p before this stumbles across a generator for Z∗

p ....
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