for p a prime, Z; is cyclic

To establish the result of the title, we need three facts. First:
Fermat’s Little Theorem: If p is prime and (a, p) = 1, then pla?~! —1 (i.e., a? "1 =, 1).

Main ingredients:

(1) If p is prime, (a,p) =1, and ab =, ac, then b =, ¢
[multiply both sides by a~!]

(2) If (a,n) =1 and (b,n) =1, then (ab,n) =1

[multiply the equations 1 = az + ny and 1 = bz + nw together and collect multiples of n
together]

Then to prove FLT, look at N = (p— 1)la?~! = (1-a)(2-a)---((p—1) - a) .

If we show that N =, (p — 1)!, then since ((p — 1)!,p) = 1 (by (2) and induction),
we have a?~! =, 1 by (1). But, again by (1), if za =, ya then z =, y, so each of
1-a,2-a,...,(p—1)-a are distinct, mod p. That is, this list is the same, mod p,

as 1,2,...,p — 1, except for possibly being written in a different order. But then the
products of the two lists are the same (mod p), as desired.

FLT tells us that a?~! = 1 (mod p) is always true, when p is prime. In the language of
groups, this means that the order of any a € Z; with a # 0 has order dividing p — 1 = |Z;|
. To establish that Z; is cyclic, we need to show that at least one of them has order equal
to p — 1. In order to show this, we need a bit more machinery:

Lagrange’s (other) Theorem: If f(x) is a polynomial with integer coefficients, of degree n,
and p is prime, then the equation f(x) =0 (mod p) has at most n mutually incongruent
solutions, unless f(x) =0 (mod p) for all z.

To see this, do what you would do if you were proving this for real or complex roots; given a
solution a, write f(z) = (x—a)g(z)+r with r=constant (where we understand this equation
to have coeflicients in Z,) using polynomial long division. This makes sense because Z,, is
a field, so division by non-zero elements works fine. Then 0 = f(a) = (a —a)g(a) +r =7
means r = 0 in Z,, so f(x) = (z — a)g(z) with g(x) a polynomial with degree n — 1 .
Structuring this as an induction argument, we can then assume that g(z) has at most
n — 1 roots, so f has at most (a and the roots of g, so) n roots, because, since p is prime,
if f(b) =(b—a)g(b) =0 (mod p), then either b —a =0 (so a and b are congruent mod p),
or g(b) = 0, so b is among the roots of g. [This is because p|zy and p prime implies that
plz or ply.]

This in turn leads us to

Corollary: If p is prime and d is a factor of p—1 (i,e, d|p—1), then the equation 2 —1 =0
(mod p) has ezactly d solutions mod p.

This is because, writing p — 1 = ds, f(z) = 2P~ — 1 = 0 has exactly p — 1 solutions
(namely, 1 through p — 1), and

gl =1 == (2% — 1) (29D 4 2962 4 gd 4 1) = (20 — 1)g(x) .
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But g(x) has at most d(s —1) = (p — 1) — d roots, and z% — 1 has at most d roots, and
together (since p is prime) they make up the p — 1 roots of f. So in order to have enough,
they both must have eractly that many roots.

To finish our proof that for p prime, there must be an a with ord,(a) = p—1: we introduce
the notation p¥||N, which means that p*|N but p¥+1 JN .

For each prime p; dividing p—1,1 <1i < s, we let p?i||p— 1.Sop—1= plfl - -pkr. Then:
the equation (*) 2P =1 (mod p) has pl* solutions, while
(1) 2 =1 (mod p) has only pf* ™' < p¥* solutions.

Pick a solution, a;, to (*) which is not a solution to (1) . [In particular, ord, (a;) = p*’,

since if it were smaller, it would have to divide pfi_l, which, by our choice of a;, it doesn’t!]

Then set a = aj ---a, . Then a computation yields that, mod p, (a; - -a,a)”C = a’f . -aff,
p—1

and a;" =, 1 for j # i, since p?j |I;);1. This implies that

p—1

p—1
- — Pq
ari =a;" #1,

_1) _

-1 ,
since otherwise ordp(ai)\pT, and so ord,(a;)| ged(pF, , a contradiction.
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So pFi||ord, (a) for every i, so p — 1|ord,(a), so ord,(a) = p — 1.

Actually finding a primitive root a for Z; is a much more challenging task than proving
one exists! The above procedure will do it, but you need to completely factor p—1 in order
to find the a; and then assemble the resulting product a. In practice, if you can factor

p — 1 completely, what one really does is start with a = 2, and compute «a e (mod p) for
every prime factor p; of p — 1. If the result is never 1, then we know that the order or a
is p—1 and so Z; = (a) . In practice it doesn’t require too many attempts with (small)
numbers relatively prime to p before this stumbles across a generator for Zj ....



