
Math 325 Topics Sheet for Exam 1

Throughout, we rely on set notation to make our ideas precise. Sets are typically described
as the collection of all objects from a specific ‘universe’ that meet certain specific conditions:

E.g., S = {x ∈ Q | x2 < 2} = the rational numbers (universe!) whose square is less than
2 (condition!).

A ⊆ B means that every element of A is also an element ofB; A = B is typically established
by showing that A ⊆ B and B ⊆ A.

A ∪ B = {x | x ∈ A textrmor x ∈ B} ; A ∩ B = {x | x ∈ A textrmand x ∈ B} ;
Ac = {x | x 6∈ A}
Functions: a function f : A → B is a rule which assigns to each x ∈ A (the domain)
exactly one element f(x) ∈ B (the codomain).

We will mostly focus on functions with A ⊆ R and B ⊆ R. Functions come in different
flavors:
increasing: if x > y then f(x) > f(y) . non-decreasing: x ≥ y implies f(x) ≥ f(y) .
decreasing: if x > y then f(x) < f(y) . non-increasing: x ≥ y implies f(x) ≤ f(y) .
One-to-one: if f(x) = f(y), then x = y . Alternate form: if x 6= y then f(x) 6= f(y). Third
form!: for any y ∈ B, there is at most one x ∈ A with f(x) = y .
Onto: for every y ∈ B, there is at least one x ∈ A with f(x) = y.
One-to-one and onto = a one-to-one correspondence (or bijection).

Note: one-to-one and onto have a lot to do with what the domain and codomain of the
funciton f are!

Composition: f : A → B , g : B → C, then g ◦ f : A → C is (g ◦ f)(x) = g(f(x))

If g ◦ f is onto, then g is onto! If g ◦ f is one-to-one, then f is one-to-one!

The Real Line: Nearly everything we will do comes down to understanding the properties
of the real line R.

R = a complete ordered field

Field: we have addition + and multiplication ·, so that
(A1) addition exists: if x, y ∈ R then x+ y ∈ R

(A2) commutativity: x+ y = y + x for every x, y ∈ R

(A3) associativity: x+ (y + z) = (x+ y) + z for every x, y, z ∈ R

(A4) zero exists: there is 0 ∈ R so that x+ 0 = x for every x ∈ R

(A5) additive inverses exist: for every x ∈ R there is a (−x) ∈ R with x+ (−x) = 0
(M1) multiplication exists: if x, y ∈ R then x · y ∈ R

(M2) commutativity: x · y = y · x for every x, y ∈ R

(M3) associativity: x · (y · z) = (x · y) · z for every x, y, z ∈ R

(M4) one exists: there is 1 ∈ R so that x · 1 = x for every x ∈ R

(M5) multiplicative inverses exist:
for every x ∈ R with x 6= 0 there is a x−1 ∈ R with x · x−1 = 1

(D) distributivity: for every x, y, z ∈ R we have x(y + z) = xy + xz



Ordered: there is a collection P = the positive numbers so that
(P1) closed under addition: if x, y ∈ P then x+ y ∈ P
(P2) closed under multiplication: if x, y ∈ P then x · y ∈ P
(P3) trichotomy:

for every x ∈ R exactly one of the following is true: x ∈ P, or −x ∈ P, or x = 0 .

We then defined the ordering x < y to mean that y − x ∈ P. (So x > 0 means x ∈ P.)
Basic properties:
trichotomy! for any x, y ∈ R exactly one of x < y, x = y, or x > y is true.
transitivity: x < y and y < z implies that x < z
x < y implies that x+ z < y + z for any z ∈ R

x < y and z > 0 implies that xz < yz (because yz − xz = (y − x)z with y − x, z ∈ P)
weak inequality: a ≤ b means a < b or a = b; similar properties hold!

From these basic properties we can recover many familiar properties we have seen before;
for example
(−x)y = −(xy) (−x)(−y) = xy −(−x) = x (x−1)−1 = x
x < 0 and y > 0 implies xy < 0 , z < 0 and w < 0 implies zw > 0
the additive inverse of a number is unique (i.e., if x+ y = 0 = x+ z then y = z)

Proving things: Our ultimate goal is to provide proofs of some of the important results
from calculus. This means that we need to justify the assertions we make, showing how a
hypothesis forces our colnclusions to be true. Two often-used approaches:

Case analysis: Starting from a hypothesis (e.g., x 6= 0), one of several possibilities (cases)
must be true (e.g., x > 0 or x < 0). If we show that in each case our hoped-for conclusion
is true (e.g., x2 > 0), then the hypothesis implies the conclusion (x 6= 0 implies x2 > 0).

Proof by contradiction: “A implies B” is the same as ”it is not possible for A to be true
and also that B is false”. Proof by contradiction consists of starting from ‘A is true and
B is false’ and showing that we must inevitably show that something we know is false is
true. This means that we cannot have A true and B false; so A implies B !

Example: using the Rational Roots Theorem (see below) we can show that it is not possible
to have x3 = 5 and x ∈ Q. So x3 = 5 implies x 6∈ Q .

Another approach we will often use: induction! (see below)

Completeness: From the natural (= counting) numbers N we get the integers Z (by
taking additive inverses) and then the rationals Q (by taking multiplicative inverses). But
to get the reals R we need to step beyond the properties above.

A set A ⊆ R is bounded (bdd) from above if there is a M ∈ R so that x ≤ M for every
x ∈ A.
A least upper bound λ is an upper bound for A so that no smaller number is an upper
bound. In symbols: x ≤ λ for every x ∈ A and if µ < λ then there is an x ∈ A with µ < x
[Equivalently: λ is an upper bd for A and if ν is also an upper bound for A then λ ≤ ν.]

Completeness Axiom: Every non-empty set A ⊆ R that is bdd from above has a least
upper bound.

Least upper bound of A is unique! λ = sup(A)



Application: If x, y ∈ R and y − x > 1, then there is an n ∈ Z with x ≤ n < y.

Application: A = {x ∈ R : x2 < 2} is non-empty and bdd above: λ = sup(A). Then we
showed: λ2 = 2 (!) So λ = what we would call

√
2

Rational Roots Theorem: If p(x) = a0x
n + · · ·an−1x + an is a polynomial with integer

coefficients ai ∈ Z for all i), and if r = α/β is a rational root of p (p(α/β) = 0 where α
and β have no factors in common, then α evenly divides an and β evenly divides a0.

Since
√
2 is a root of p(x) = x2 − 2, which by the rational roots theorem has no rational

roots,
√
2 6∈ Q. (!) By the same reasoning, if n ∈ N and

√
n ∈ Q then

√
n ∈ N.

Well-ordering Property: If A ⊆ N is non-empty, then it has a smallest element. That
is, there is an λ ∈ A so that lambda ≤ z for every z ∈ A. (In general for a set A whose
infimum λ lies in A, we call it the mminimum of A. If the supremum lies in A, we call it
the maximum.)

Application: the Principle of Mathematical Induction: If A ⊆ N is a set satisfying
(1) n0 ∈ A, and (2) if n ≥ n0 and n ∈ A then n+ 1 ∈ A, then {n ∈ N : n ≥ n0} ⊆ A.

[Why? If not all n ≥ n0 are in A, then there is a smallest n which is not in A. But then
n− 1 ∈ A (or n = n0) both of which contradict our hypotheses!]

PMI as it is usually stated: If P (n) is a statement about the integer n so that
(1) P (n0) is true, and
(2) if n ≥ n0 and P (n) is true then P (n+ 1) must also be true,

then P (n) is true for every integer n ≥ n0.

Sample applications:

For every integer n ≥ 1 we have

n
∑

k=1

k =
n(n+ 1)

2

For every integer n ≥ 1 we have
n
∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6

For every n ≥ 5 we have 2n > n2

Fibonacci sequence: a0 = a1 = 1 and for n ≥ 1 we have an+1 = an+an−1. Then for every

n ≥ (something) we have an ≥
(3

2

)n

, and for every n ≥ 12 we have an ≥ n2.

[For all of these the method by which we established the inductive step is probably more
important as we go forward than the actual result!]

More Well-ordered property consequences:
If ǫ > 0 then there is an n ∈ N so that nǫ > 0 (the Archimedean Principle).

[Add a positive number to itself enough times and you will get a big number!]
Rationals are everywhere: If x, y ∈ R with x < y then there is an r ∈ Q so that x < r < y.

Sequences and convergence: Start with distance:
Absolute value: |x| = x if x ≥ 0, otherwise it is −x. So |x| ≥ 0 for all x.
“Triangle inequality”: |x+ y| ≤ |x|+ |y| for every x, y ∈ R .
[Useful ‘opposite’ consquence: |x− y| ≥ |x| − |y|

(useful for showing that |x− y| is not small!]



|x− y| = the distance between x and y. Triangle inequality: |x− z| ≤ |x− y|+ |y − z|
Sequences: A sequence is essentially just a function f : N → R. We write f(n) = an

Examples: the Fibonnaci sequence! a0 = a1 = 1, a2 = 2, a3 = 3, a4 = 5, a5 = 8, a6 = 13
. . .

an = 1 + (−1)n/n , bn =
n2 − n+ 13

3n2 + 2n− 13

an =

n
∑

k=1

1

k2

Convergence: What happens to a sequence as n gets large? E.g., for bn =
n2 − n+ 13

3n2 + 2n− 13
,

observation/intuition/calculus suggests that for large n bn is approximately 1/3. Formal-
izing this notion leads us to:

lim
n→∞

an = L means that an is close to L so long as n is large. More precisely, an is as close

as we want it to be to L, so long as n is large enough. This leads us to

lim
n→∞

an = L means for every ǫ > 0 [think: small!] there is an N ∈ N [N depends on ǫ (!)]

so that n ≥ N implies that |an − L| < ǫ . If this limit exists (i.e., there is an L that the
sequence converges to) we say that the sequence is convergent. If there is no number that
the sequence converges to, we say that the sequence is divergent. [Shorthand: we write
an → L.]

The key here is that we wish to show that |an − L| is small; we typically do this by
comparing |an − L| to other things that we know are small. This, in turn, we usually do
by altering |an −L|, making it larger (but not too large!), until we end up with something
we can show is small (so long as n is large enough!). To help us do this we have some basic
limit results:

If an → L and bb → M , and k ∈ R is a konstant, then:
kan → kL
an + bn → L+M
an − bn → L−M
anbn → LM
an/bn → L/M (so long as bn,M 6= 0)

Other properties we learned along the way:

If (an)
∞

n=1 is convergent, then the set A = {an : n ∈ N} is bounded.
Limits are unique! If an → L and an → M , then L = M .

1

n
→ 0

If an ≥ a for every n (eventually!) and an → L, then L ≥ a
If an ≥ bn for every n and an → L, bn → M , then L ≥ M

If an → L and L 6= 0, then eventually |an| >
|L|
2

Showing convergence without knowing the limit: monotonicity

an is monotone increasing if an+1 ≥ an for every n



bn is monotone decreasing if bn+1 ≤ bn for every n
If it is one or the other, we say the sequence is monotone (or monotonic).
A monotone increasing sequence that is bounded above (i.e., for some M ∈ R we have
an ≤ M for every n ∈ N) converges it limit is sup{an : n ∈ N}
[A monotone decreasing sequence that is bounded below also converges!]

Example:

an =

n
∑

k=1

1

k2
≤ 1+

n
∑

k=2

1

k(k − 1)
= 1+

n− 1

n
≤ 2 (where the last equality is established by

induction!), so an → L for some L [Fact: L = π2/6 ...]

The Squeeze Theorem: If an ≤ bn ≤ cn for every n and an → L and cn → L as n → ∞,
then bn → L and n → ∞ .

So, e.g., since −1 ≤ sinn ≤ 1 for all n, 1
n
sinn → 0 as n → ∞.

Subsequences: A subsequence amounts to choosing some of the terms of a sequence;
formally, a subsequence is ank

= ag(k) for some strictly monotone increasing function
g : N → N. Subsequences inherit many of the same properties of the original sequence, for
example, boundedness and convergence: if an → L then ank

→ L for every subsequence of
an. On the other hand,

Every bounded sequence has a monotonic subsequence. [But we cannot determine before-
hand whether or not it will be increasing or descreasing.]

So a bounded sequence always has a convergent subsequence!


