Math 314

Topics for second exam

Technically, everything covered by the first exam plus

Chapter 2 §6 Determinants

(Square) matrices come in two flavors: invertible (all \(Ax = b\) have a solution) and non-invertible (\(Ax = 0\) has a non-trivial solution). It is an amazing fact that one number identifies this difference; the determinant of \(A\).

For \(2 \times 2\) matrices \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\), this number is \(\det(A) = ad - bc\); if \(\neq 0\), \(A\) is invertible, if \(= 0\), \(A\) is non-invertible (= singular).

For larger matrices, there is a similar (but more complicated formula):

\[\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{i1} \det(M_{i1}(A))\]

(this is called expanding along the first column)

Amazing properties:
If \(A\) is upper triangular, then \(\det(A)\) = product of the entries on the diagonal
If you multiply a row of \(A\) by \(c\) to get \(B\), then \(\det(B) = c \det(A)\)
If you add a mult of one row of \(A\) to another to get \(B\), then \(\det(B) = \det(A)\)
If you switch a pair of rows of \(A\) to get \(B\), then \(\det(B) = -\det(A)\)

In other words, we can understand exactly how each elementary row operation affects the determinant. In part,
\(A\) is invertible iff \(\det(A) \neq 0\); and in fact, we can use row operations to calculate \(\det(A)\) (since the RREF of a matrix is upper triangular).

More interesting facts:
\(\det(AB) = \det(A)\det(B)\) ; \(\det(A^T) = \det(A)\)

We can expand along other columns than the first:
\[\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij}(A))\]
(expanding along \(j\)th column)
And since \(\det(A^T) = \det(A)\), we could expand along rows, as well....

A formula for the inverse of a matrix:
If we define \(A_c\) to be the matrix whose \((i,j)\)th entry is \((-1)^{i+j} \det(M_{ij}(A))\), then \(A_c^T A = (\det(A)) I\) \((A_c^T\) is called the adjoint of \(A\)). So if \(\det(A) \neq 0\), then we can write the inverse of \(A\) as
\[A^{-1} = \frac{1}{\det(A)} A_c^T\]
(This is very handy for \(2 \times 2\) matrices...)

The same approach allows us to write an explicit formula for the solution to \(Ax = b\), when \(A\) is invertible:
If we write \(B_i = A\) with its \(i\)th column replaced by \(b\), then the (unique) solution to \(Ax = b\) has \(i\)th coordinate equal to

\[
\frac{\det(B_i)}{\det(A)}
\]
Chapter 3: Vector Spaces

§1: Basic concepts

Basic idea: a vector space V is a collection of things you can add together, and multiply by scalars (= numbers)

$V =$ things for which $v, w \in V$ implies $v + v \in V$; $a \in \mathbb{R}$ and $v \in V$ implies $a \cdot v \in V$

E.g., $V = \mathbb{R}^2$, add and scalar multiply componentwise

$V =$ all 3-by-2 matrices, add and scalar multiply entrywise

$V = \{ax^2 + bx + c : a, b, c \in \mathbb{R}\}$ = polynomials of degree ≤ 2; add, scalar multiply as functions

The standard vector space of dimension $n : \mathbb{R}^n = \{(x_1, \ldots, x_n) : x_i \in \mathbb{R} \text{ all } i\}$

An abstract vector space is a set V together with some notion of addition and scalar multiplication, satisfying the ‘usual rules’: for $u, v, w \in V$ and $c, d \in \mathbb{R}$ we have

$u + v \in V$, $cu \in V$

$u + v = v + u$, $u + (v + w) = (u + v) + w$

There is $0 \in V$ and $-u \in V$ with $0 + u = u$ all u, and $u + (-u) = 0$

$c(u + v) = cu + cv$, $(c + d)u = cu + du$, $(cd)u = c(du)$, $1u = u$

Examples: $\mathbb{R}^{m,n} =$ all $m \times n$ matrices, under matrix addition/scalar mult

$C[a, b] =$ all continuous functions $f : [a, b] \rightarrow \mathbb{R}$, under function addition

$\{A \in \mathbb{R}^{n,n} : A^T = A\} =$ all symmetric matrices, is a vector space

Note: $\{f \in C[a, b] : f(a) = 1\}$ is not a vector space (e.g., has no bf 0)

Basic facts:

$0v = 0$, $c0 = 0$, $(-c)v = -(cv)$; $cv = 0$ implies $c = 0$ or $v = 0$

A vector space (=VS) has only one 0; a vector has only one additive inverse

Linear operators:

$T : V \rightarrow W$ is a linear operator if $T(cu + dv) = cT(u) + dT(v)$ for all $c, d \in \mathbb{R}$, $u, v \in V$

Example: $T_A : \mathbb{R}^n \rightarrow \mathbb{R}^m$, $T_A(v) = Av$, is linear

$T : C[a, b] \rightarrow \mathbb{R}$, $T(f) = f(b)$, is linear

$T : \mathbb{R}^2 \rightarrow \mathbb{R}$, $T(x, y) = x - xy + 3y$ is not linear!

§2: Subspaces

Basic idea: $V =$ vector space, $W \subseteq V$, then to check if W is a vector space, using the same addition and scalar multiplication as V, we need only check two things:

whenever $c \in \mathbb{R}$ and $u, v \in W$, we always have $cu, u + v \in W$

All other properties come for free, since they are true for V!

If V is a VS, $W \subseteq V$ and W is a VS using the same operations as V, we say that W is a (vector) subspace of V.

Examples: $\{(x, y, z) \in \mathbb{R}^3 : z = 0\}$ is a subspace of \mathbb{R}^3

$\{(x, y, z) \in \mathbb{R}^3 : z = 1\}$ is not a subspace of \mathbb{R}^3

$\{A \in \mathbb{R}^{n,n} : A^T = A\}$ is a subspace of $\mathbb{R}^{n,n}$

Basic construction: $v_1, \ldots, v_n \in V$

$W = \{a_1v_1 + \cdots + a_nv_n : a_1, \ldots, a_n \in \mathbb{R}\} =$ all linear combinations of $v_1, \ldots, v_n =$ span$\{v_1, \ldots, v_n\}$

= the span of v_1, \ldots, v_n, is a subspace of V

Basic fact: if $w_1, \ldots, w_k \in \text{span}\{v_1, \ldots, v_n\}$, then span$\{w_1, \ldots, w_k\} \subseteq \text{span}\{v_1, \ldots, v_n\}$
§3: **Subspaces from matrices**

- Column space of $A = \mathcal{C}(A) = \text{span}\{\text{the columns of } A\}$
- Row space of $A = \mathcal{R}(A) = \text{span}\{\text{transposes of the rows of } A\}$
- Nullspace of $A = \mathcal{N}(A) = \{x \in \mathbb{R}^n : Ax = 0\}$

 (Check: $\mathcal{N}(A)$ is a subspace!)

Alternative view $Ax = \text{lin comb of columns of } A$, so is in $\mathcal{C}(A)$; in fact, $\mathcal{C}(A) = \{Ax : x \in \mathbb{R}^n\}$

Subspaces from linear operators: $T : V \rightarrow W$

 - Image of $T = \text{im}(T) = \{Tv : v \in V\}$
 - Kernel of $T = \text{ker}(T) = \{x : T(x) = 0\}$

When $T = T_A$, $\text{im}(T) = \mathcal{C}(A)$, and $\text{ker}(T) = \mathcal{N}(A)$

T is called one-to-one if $Tu = Tv$ implies $u = v$

Basic fact: T is one-to-one iff $\text{ker}(T) = \{0\}$

§4: **Norm and inner product**

Norm means length! In \mathbb{R}^n this is computed as $\|x\| = \|(x_1, \ldots, x_n)\| = (x_1^2 + \cdots + x_n^2)^{1/2}$

Basic facts:

- $\|x\| \geq 0$, and $\|x\| = 0$ iff $x = 0$,
- $\|cw\| = |c| \cdot \|w\|$, and $\|u + v\| \leq \|u\| + \|v\|$ (triangle inequality)
- Unit vector: the norm of $\frac{u}{\|u\|}$ is 1; $\frac{u}{\|u\|}$ is the unit vector in the direction of u.

Convergence: $u_n \rightarrow u$ if $\|u_n - u\| \rightarrow 0$

Inner product:

Idea: assign a number to a pair of vectors (think: angle between them?)

In \mathbb{R}^n, we use the dot product: $v = (v_1, \ldots, v_n)$, $w = (w_1, \ldots, w_n)$

$$v \cdot w = \langle v, w \rangle = v_1w_1 + \cdots + v_nw_n = v^T w$$

Basic facts:

- $\langle v, v \rangle = \|v\|^2$ (so $\langle v, v \rangle \geq 0$, and equals 0 iff $v = 0$)
- $\langle v, w \rangle = \langle w, v \rangle$; $\langle cv, w \rangle = \langle v, cw \rangle = c \langle v, w \rangle$

§5: **Applications of norms and inner products**

Cauchy-Schwartz inequality: for all v, w, $|\langle v, w \rangle| \leq \|v\| \cdot \|w\|$

(this implies the triangle inequality)

So: $-1 \leq \frac{\langle v, w \rangle}{(\|v\| \cdot \|w\|)} \leq 1$

Define: the angle Θ between v and w = the angle (between 0 and π with $\cos(\Theta) = \frac{\langle v, w \rangle}{(\|v\| \cdot \|w\|)}$)

Ex: $v = w$: then $\cos(\Theta) = 1$, so $\Theta = 0$

Two vectors are orthogonal if their angle is $\pi/2$, i.e., $\langle v, w \rangle = 0$. Notation: $v \perp w$

Pythagorean theorem: if $v \perp w$, then $\|v + w\|^2 = \|v\|^2 + \|w\|^2$

Orthogonal projection: Given $v, w \in \mathbb{R}^n$, then we can write $v = cw + u$, with $u \perp w$

$$c = \frac{\langle v, w \rangle}{\langle w, w \rangle}; \quad cw = \frac{\langle v, w \rangle}{\langle w, w \rangle}w = \frac{\langle v, w \rangle \cdot w}{\|w\| \cdot \|w\|} = (\text{orthogonal projection of } v \text{ onto } w)$$

$$u = v - cw!$$
Least squares:
Idea: Find the closest thing to a solution to $Ax = b$, when it has no solution.
Overdetermined system: more equations than unknowns. Typically, the system will have no solution.
Instead, find the closest vector with a solution (i.e., of the form Ax) to b.
Need: $Ax - b$ perpendicular to the subspace $\mathcal{C}(A)$
I.e., need: $Ax - b \perp$ each column of A, i.e., need $(\text{column of } A)^T (Ax - b) = 0$
I.e., need $A^T (Ax - b) = 0$, i.e., need $(A^T A)x = (A^T b)$
Fact: such a system of equations is always consistent!
Ax will be the closest vector in $\mathcal{C}(A)$ to b
If $A^T A$ is invertible (need: $r(A)$=number of columns of A), then we can write $x = (A^T A)^{-1}(A^T b)$

§6: Bases and dimension
Idea: putting free and bound variables on a more solid theoretical footing
We’ve seen: every solution to $Ax = b$ can be expressed in terms of the free variables
\[x = v + x_1 v_1 + \cdots + x_k v_k \]
Could a different method of solution give us a different number of free variables? (Ans: No! B/c that number is the ‘dimension’ of a certain subspace...)
Linear independence/dependence:
$v_1, \ldots, v_n \in V$ are linearly independent if the only way to express 0 as a linear combination of the v_i’s is with all coefficients equal to 0;
whenever $c_1 v_1 + \cdots + c_n v_n = 0$, we have $c_1 = \cdots = c_n = 0$
Otherwise, we say the vectors are linearly dependent. I.e., some non-trivial linear combination equals 0. Any vector v_i in such a linear combination having a non-zero coefficient is called redundant; the expression (lin comb = 0) can be rewritten to say that $v_i = \text{lin comb of the remaining vectors}$, i.e., v_i is in the span of the remaining vectors. This means: Any redundant vector can be removed from our list of vectors without changing the span of the vectors.

A basis for a vector space V is a set of vectors v_1, \ldots, v_n so that (a) they are linearly independent, and (b) $V = \text{span}\{v_1, \ldots, v_n\}$.
Example: The vectors $e_1 = (1, 0, \ldots, 0)$,$me_2 = (0, 1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1)$ are a basis for \mathbb{R}^n, the standard basis.
To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant vectors (so you don’t change the span) until the ones that are left are linearly independent. Note: each time you throw one out, you need to ask: are the remaining ones lin indep?
Basic fact: If v_1, \ldots, v_n is a basis for V, then every $v \in V$ can be expressed as a linear combination of the v_i’s in exactly one way. If $v = a_1 v_1 + \cdots + a_n v_n$, we call the a_i the coordinates of v with respect to the basis v_1, \ldots, v_n.

The Dimension Theorem: Any two bases of the same vector space contain the same number of vectors. (This common number is called the dimension of V, denoted $\text{dim}(V)$.)
Reason: if v_1, \ldots, v_n is a basis for V and $w_1, \ldots, w_k \in V$ are linearly independent, then $k \leq n$
As part of that proof, we also learned:

If \(v_1, \ldots, v_n \) is a basis for \(V \) and \(w_1, \ldots, w_k \) are linearly independent, then the spanning set \(v_1, \ldots, v_n, w_1, \ldots, w_k \) for \(V \) can be thinned down to a basis for \(V \) by throwing away \(v_i \)'s.

In reverse: we can take any linearly independent set of vectors in \(V \), and add to it from any basis for \(V \), to produce a new basis for \(V \).

Some consequences:

- If \(\text{dim}(V) = n \) and \(W \subseteq V \) is a subspace of \(V \), then \(\text{dim}(W) \leq n \)
- If \(\text{dim}(V) = n \) and \(v_1, \ldots, v_n \in V \) are linearly independent, then they also span \(V \)
- If \(\text{dim}(V) = n \) and \(v_1, \ldots, v_n \in V \) span \(V \), then they are also linearly independent.

§7: Linear systems revisited

Using our new-found terminology, we have:

A system of equations \(Ax = b \) has a solution iff \(b \in \mathcal{C}(A) \).

If \(Ax_0 = b \), then every other solution to \(Ax = b \) is \(x = x_0 + z \), where \(z \in \mathcal{N}(A) \).

To finish our description of (a) the vectors \(b \) that have solutions, and (b) the set of solutions to \(Ax = b \), we need to find (useful) bases for \(\mathcal{C}(A) \) and \(\mathcal{N}(A) \).

So of course we start with:

Finding a basis for the row space.

Basic idea: if \(B \) is obtained from \(A \) by elementary row operations, then \(\mathcal{R}(A) = \mathcal{R}(B) \).

So of \(R \) is the reduced row echelon form of \(A \), \(\mathcal{R}(R) = \mathcal{R}(A) \).

But a basis for \(\mathcal{R}(R) \) is easy to find; take all of the non-zero rows of \(R \)! (The zero rows are clearly redundant.) These rows are linearly independent, since each has a ‘special coordinate’ where, among the rows, only it is non-zero. That coordinate is the *pivot* in that row. So in any linear combination of rows, only that vector can contribute something non-zero to that coordinate. *Consequently*, in any linear combination, that coordinate is the *coefficient* of our vector! So, if the lin comb is \(0 \), the coefficient of our vector (i.e., each vector!) is \(0 \).

Put bluntly, to find a basis for \(\mathcal{R}(A) \), row reduce \(A \), to \(R \); the (transposes of) the non-zero rows of \(R \) form a basis for \(\mathcal{R}(A) \).

This in turn gives a way to find a basis for \(\mathcal{C}(A) \), since \(\mathcal{C}(A) = \mathcal{R}(A^T) \)!

To find a basis for \(\mathcal{C}(A) \), take \(A^T \), row reduce it to \(S \); the (transposes of) the non-zero rows of \(S \) form a basis for \(\mathcal{R}(A^T) = \mathcal{C}(A) \).

This is probably in fact the most useful basis for \(\mathcal{C}(A) \), since each basis vector has that special coordinate. This makes it very easy to decide if, for any given vector \(b \), \(Ax = b \) has a solution. You need to decide if \(b \) can be written as a linear combination of your basis vectors; but each coefficient will be the corrdinate of \(b \) lying at the special coordinate of each vector. Then just check to see if **that** linear combination of your basis vectors adds up to \(b \)!
There is another, perhaps less useful, but faster way to build a basis for $C(A)$: row reduce A to R, locate the pivots in R, and take the columns of A (Note: A, not R!) the correspond to the columns containing the pivots. These form a (different) basis for $C(A)$.

Why? Imagine building a matrix B out of just the bound columns. Then in row reduced form there is a pivot in every column. Solving $Bv = 0$ in the case that there are no free variables, we get $v = 0$, so the columns are linearly independent. If we now add a free column to B to get C, we get the same collection of pivots, so our added column represents a free variable. Then there are non-trivial solutions to $Cv = 0$, so the columns of C are not linearly independent. This means that the added columns can be expressed as a linear combination of the bound columns. This is true for all free columns, so the bound columns span $C(A)$.

Finally, there is the nullspace $N(A)$. To find a basis for $N(A)$:

Row reduce A to R, and use each row of R to solve $Rx = 0$ by expressing each bound variable in terms of the frees. collect the coefficients together and write $x = x_{i_1}v_1 + \cdots + x_{i_k}v_k$ where the x_{i_j} are the free variables. Then the vectors v_1, \ldots, v_k form a basis for $N(A)$.

Why? By construction they span $N(A)$; and just with our row space procedure, each has a special coordinate where only it is 0 (the coordinate corresponding to the free variable!).

Note: since the number of vectors in the bases for $R(A)$ and $C(A)$ is the same as the number of pivots (= number of nonzero rows in the RREF) = rank of A, we have $\dim(R(A))=\dim(C(A))=r(A)$.

And since the number of vectors in the basis for $N(A)$ is the same as the number of free variables for A (= the number of columns without a pivot) = nullity of A (hence the name!), we have $\dim(N(A)) = n(A) = n - r(A)$ (where n=number of columns of A).

So, $\dim(C(A)) + \dim(N(A)) = \text{the number of columns of } A$.
