
Math 314

Topics for second exam

Technically, everything covered by the �rst exam plus

Chapter 2 x6 Determinants

(Square) matrices come in two avors: invertible (all Ax = b have a solution) and non-
invertible (Ax = 0 has a non-trivial solution). It is an amazing fact that one number
identi�es this di�erence; the determinant of A.

For 2�2 matrices A =

�
a b
c d

�
, this number is det(A)=ad� bc; if 6= 0, A is invertible, if

=0, A is non-invertible (=singular).
For larger matrices, there is a similar (but more complicated formula):
A= n� n matrix, Mij(A) = matrix obtained by removing ith row and jth column of A.
det(A) = �n

i=1(�1)
i+1ai1det(Mi1(A))

(this is called expanding along the �rst column)

Amazing properties:
If A is upper triangular, then det(A) = product of the entries on the diagonal
If you multiply a row of A by c to get B, then det(B) = cdet(A)
If you add a mult of one row of A to another to get B, then det(B) = det(A)
If you switch a pair of rows of A to get B, then det(B) = �det(A)

In other words, we can understand exactly how each elementary row operation a�ects the
determinant. In part,
A is invertible i� det(A) 6= 0; and in fact, we can use row operations to calculate det(A)
(since the RREF of a matrix is upper triangular).
More interesting facts:
det(AB) = det(A)det(B) ; det(AT ) = det(A)

We can expand along other columns than the �rst:
det(A) = �n

i=1(�1)
i+jaijdet(Mij(A))

(expanding along jth column)
And since det(AT ) = det(A), we could expand along rows, as well....

A formula for the inverse of a matrix:
If we de�ne Ac to be the matrix whose (i; j)th entry is (�1)i+jdet(Mij(A)), then AT

c A =
(detA)I (AT

c is called the adjoint of A). So if det(A)6= 0, then we can write the inverse of
A as

A�1 =
1

det(A)
AT
c (This is very handy for 2�2 matrices...)

The same approach allows us to write an explicit formula for the solution to Ax = b, when
A is invertible:
If we write Bi = A with its ith column replaced by b, then the (unique) solution to Ax = b
has ith coordinate equal to

det(Bi)

det(A)
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Chapter 3: Vector Spaces

x1: Basic concepts
Basic idea: a vector space V is a collection of things you can add together, and multiply
by scalars (= numbers)
V = things for which v; w 2 V implies v + v 2 V ; a 2 R and v 2 V implies a � v 2 V

E.g., V=R2, add and scalar multiply componentwise
V=all 3-by-2 matrices, add and scalar multiply entrywise
V=fax2+bx+c : a; b; c 2 Rg = polynomials of degree �2; add, scalar multiply as functions

The standard vector space of dimension n : Rn = f(x1; : : : ; xn) : xi 2 R all ig

An abstract vector space is a set V together with some notion of addition and scalar
multiplication, satisfying the `usual rules': for u; v; w 2 V and c; d 2 R we have

u+ v 2 V , cu 2 V
u+ v = v + u, u+ (v + w) = (u+ v) + w
There is 0 2 V and �u 2 V with 0+ u = u all u, and u+ (�u) = 0

c(u+ v) = cu+ cv, (c+ d)u = cu+ du, (cd)u = c(du), 1u = u

Examples: Rm;n = all m� n matrices, under matrix addition/scalar mult
C[a; b] = all continuous functions f :[a; b]!R, under function addition
fA 2 Rn;n : AT = Ag = all symmetric matrices, is a vector space

Note: ff 2 C[a; b] : f(a) = 1g is not a vector space (e.g., has no bf 0)
Basic facts:
0v = 0, c0 = 0, (�c)v = �(cv); cv = 0 implies c = 0 or v = 0

A vector space (=VS) has only one 0; a vector has only one additive inverse

Linear operators:
T : V !W is a linear operator if T (cu+ dv) = cT (u) + dT (v) for all c; d 2 R, u; v 2 V
Example: TA : Rn ! Rm, TA(v) = Av, is linear
T : C[a; b]! R, T (f) = f(b), is linear

T : R2 ! R, T (x; y) = x� xy + 3y is not linear!

x2: Subspaces
Basic idea: V = vector space, W � V , then to check if W is a vector space, using the
same addition and scalar multiplication as V , we need only check two things:

whenever c 2 R and u; v 2W , we always have cu; u+ v 2W

All other properties come for free, since they are true for V !
If V is a VS, W � V and W is a VS using the same operations as V , we say that W is a
(vector) subspace of V .

Examples: f(x; y; z) 2 R3 : z = 0g is a subspace of R3

f(x; y; z) 2 R3 : z = 1g is not a subspace of R3

fA 2 Rn;n : AT = Ag is a subspace of Rn;n

Basic construction: v1; � � � ; vn 2 V
W = fa1v1+� � �anvn : a1; : : : ; an 2 R= all linear combinations of v1; � � � ; vn = spanfv1; � � � ; vng
= the span of v1; � � � ; vn , is a subspace of V

Basic fact: if w1; : : : ; wk 2 spanfv1; � � � ; vng, then spanfw1; � � � ; wkg � spanfv1; � � � ; vng
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x3: Subspaces from matrices

column space of A = C(A) = spanfthe columns of Ag
row space of A = R(A) = spanf(transposes of the ) rows of Ag
nullspace of A = N (A) = fx 2 Rn : Ax = 0g

(Check: N (A) is a subspace!)

Alternative view Ax = lin comb of columns of A, so is in C(A); in fact, C(A) = fAx :
x 2 Rng

Subspaces from linear operators: T : V !W
image of T = im(T ) = fTv : v 2 V g
kernel of T = ker(T ) = fx : T (x) = 0g

When T = TA, im(T ) = C(A), and ker(T ) = N (A)

T is called one-to-one if Tu = Tv implies u = v
Basic fact: T is one-to-one i� ker(T ) = f0g

x4: Norm and inner product

Norm means length! In Rn this is computed as jjxjj = jj(x1; : : : ; xn)jj = (x21+ � � �+ x2n)
1=2

Basic facts: jjxjj � 0, and jjxjj = 0 i� x = 0,
jjcujj = jcj � jjujj, and jju+ vjj � jjujj+ jjvjj (triangle inequality)

unit vector: the norm of u=jjujj is 1; u=jjujj is the unit vector in the direction of u.
convergence: un ! u if jjun � ujj ! 0

Inner product:
idea: assign a number to a pair of vectors (think: angle between them?)
In Rn, we use the dot product: v = (v1; : : : ; vn), w = (w1; : : : ; wn)
v � w = hv; wi = v1w1 + � � �+ vnwn = vTw

Basic facts:
hv; vi = jjvjj2 (so hv; vi � 0, and equals 0 i� v = 0)
hv; wi = hw; vi; hcv; wi = hv; cwi = chv; wi

x5: Applications of norms and inner products

Cauchy-Schwartz inequality: for all v; w, jhv; wij � jjvjj � jjwjj
(this implies the triangle inequality)
So: �1 � hv; wi=(jjvjj � jjwjj) � 1

De�ne: the angle � between v and w = the angle (between 0 and � with cos(�) =
hv; wi=(jjvjj � jjwjj)
Ex: v = w : then cos(�) = 1, so � = 0
Two vectors are orthogonal if their angle is �=2, i.e., hv; wi=0. Notation: v ? w
Pythagorean theorem: if v ? w, then jjv + wjj2 = jjvjj2 + jjwjj2

Orthogonal projection: Given v; w 2 Rn, then we can write v = cw + u, with u ? w

c =
hv; wi

hw;wi
;

cw = projwv =
hv; wi

hw;wi
w=

hv; wi

jjwjj

w

jjwjj
= (orthogonal) projection of v onto w

u = v � cw !
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Least squares:
Idea: Find the closest thing to a solution to Ax = b, when it �has no solution.
Overdetermined system: more equations than unknowns. Typically, the system will have
no solution.
Instead, �nd the �closest vector with a solution (i.e, of the form Ax) to b.
Need: Ax� b perpendicular to the subspace C(A)
I.e, need: Ax� b ? each column of A, i.e., need h(column of A),Ax� bi = 0
I.e., need AT (Ax� b) = 0, i.e., need (ATA)x = (AT b)

Fact: such a system of equations is always consistent!
Ax will be the closest vector in C(A) to b
If ATA is invertible (need: r(A)=number of columnsof A), then we can write x =
(ATA)�1(AT b); Ax = A(ATA)�1(AT b)

x6: Bases and dimension

Idea: putting free and bound variables on a more solid theoretical footing
We've seen: every solution to Ax = b can be expressed in terms of the free variables
(x = v + xi1v1 + � � �+ xikvk)
Could a di�erent method of solution give us a di�erent number of free variables? (Ans:
No! B/c that number is the `dimension' of a certain subspace...)

Linear independence/dependence:
v1; : : : ; vn 2 V are linearly independent if the only way to express 0 as a linear combination
of the vi's is with all coe�cients equal to 0;
whenever c1v1 + � � �+ cnvn = 0, we have c1 = � � � = cn = 0
Otherwise, we say the vectors are linearly dependent. I.e, some non-trivial linear combi-
nation equals 0. Any vector vi in such a linear combination having a non-zero coe�cient
is called redundant; the expression (lin comb = 0) can be rewritten to say that vi = lin
comb of the remaining vectors, i.e., vi is in the span of the remaining vectors. This means:
Any redundant vector can be removed from our list of vectors without changing the

span of the vectors.

A basis for a vector space V is a set of vectors v1; : : : ; vn so that (a) they are linearly
independent, and (b) V=spanfv1; : : : ; vng .
Example: The vectors e1 = (1; 0; : : : ; 0)me2 = (0; 1; 0; : : : ; 0); : : : ; en = (0; : : : ; 0; 1) are a
basis for Rn, the standard basis.

To �nd a basis: start with a collection of vectors that span, and repeatedly throw out
redundant vectors (so you don't change the span) until the ones that are left are linearly
independent. Note: each time you throw one out, you need to ask: are the remaining ones
lin indep?
Basic fact: If v1; : : : ; vn is a bassis for V , then every v 2 V can be expressed as a linear
combination of the vi's in exactly one way. If v = a1v1 + � � � + anvn, we call the ai the
coordinates of v with respect to the basis v1; : : : ; vn .

The Dimension Theorem: Any two bases of the same vector space contain the same number
of vectors. (This common number is called the dimension of V , denoted dim(V ) .)
Reason: if v1; : : : ; vn is a basis for V and w1; : : : ; wk 2 V are linearly independent, then
k � n
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As part of that proof, we also learned:
If v1; : : : ; vn is a basis for V and w1; : : : ; wk are linearly independent, then the spanning
set v1; : : : ; vn; w1; : : : ; wk for V can be thinned down to a basis for V by throwing away
vi's .

In reverse: we can take any linearly independent set of vectors in V , and add to it from
any basis for V , to produce a new basis for V .

Some consequences:
If dim(V )=n, and W � V is a subspace of V , then dim(W )� n

If dim(V )=n and v1; : : : ; vn 2 V are linearly independent, then they also span V
If dim(V )=n and v1; : : : ; vn 2 V span V , then they are also linearly independent.

x7: Linear systems revisited
Using our new-found terminology, we have:

A system of equations Ax = b has a solution i� b 2 C(A) .

If Ax0 = b, then every other solution to Ax = b is x = x0 + z, where z 2 N (A) .

To �nish our description of (a) the vectors b that have solutions, and (b) the set of solutions
to Ax = b, we need to �nd (useful) bases for C(A) and N (A).

So of course we start with:
Finding a basis for the row space.
Basic idea: if B is obtained from A by elementary row operations, then R(A) = R(B).
So of R is the reduced row echelon form of A, R(R) = R(A)
But a basis for R(R) is easy to �nd; take all of the non-zero rows of R ! (The zero rows
are clearly redundant.) These rows are linearly independent, since each has a `special
coordinate' where, among the rows, only it is non-zero. That coordinate is the pivot in
that row. So in any linear combination of rows, only that vector can contribute something
non-zero to that coordinate. Consequently, in any linear combination, that coordinate is
the coe�cient of our vector! So, if the lin comb is 0, the coe�cient of our vector (i.e.,
each vector!) is 0.

Put bluntly, to �nd a basis for R(A), row reduce A, to R; the (transposes of) the non-zero
rows of R form a basis for R(A).

This in turn gives a way to �nd a basis for C(A), since C(A) = R(AT ) !

To �nd a basis for C(A), take AT , row reduce it to S; the (transposes of) the non-zero
rows of S form a basis for R(AT ) =C(A) .

This is probably in fact the most useful basis for C(A), since each basis vector has that
special coordinate. This makes it very easy to decide if, for any given vector b, Ax = b has
a solution. You need to decide if b can be written as a linear combination of your basis
vectors; but each coe�cient will be the corrdinate of b lying at the special coordinate of
each vector. Then just check to see if that linear combination of your basis vectors adds
up to b !
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There is another, perhaps less useful, but faster way to build a basis for C(A); row reduce A
to R, locate the pivots in R, and take the columns of A (Note: A, not R !) the correspond
to the columns containing the pivots. These form a (di�erent) basis for C(A).

Why? Imagine building a matrix B out of just the bound columns. Then in row reduced
form there is a pivot in every column. Solving Bv = 0 in the case that there are no free
variables, we get v = 0, so the columns are linearly independent. If we now add a free
column to B to get C, we get the same collection of pivots, so our added column represents
a free variable. Then there are non-trivial solutions to Cv = 0, so the columns of C are
not linearly independent. This means that the added columns can be expressed as a linear
combination of the bound columns. This is true for all free columns, so the bound columns
span C(A).

Finally, there is the nullspace N (A). To �nd a basis for N (A):

Row reduce A to R, and use each row of R to solve Rx = 0 by expressing each bound
variable in terms of the frees. collect the coee�cients together and write x = xi1v1 + � � �+
xikvk where the xij are the free variables. Then the vectors v1; : : : ; vk form a basis for
N (A).

Why? By construction they span N (A); and just with our row space procedure, each has
a special coordinate where only it is 0 (the coordinate corresponding to the free variable!).

Note: since the number of vectors in the bases for R(A) and C(A) is the same as the
number of pivots ( = number of nonzero rows in the RREF) = rank of A, we have
dim(R(A))=dim(C(A))=r(A).
And since the number of vectors in the basis for N (A) is the same as the number of free
variables for A ( = the number of columns without a pivot) = nullity of A (hence the
name!), we have dim(N (A)) = n(A) = n� r(A) (where n=number of columns of A).
So, dim(C(A)) + dim(N (A)) = the number of columns of A .
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