
Math 314

Topics for �rst exam

Chapter 1: Linear systems of equations

x1: Some examples
Systems of linear equations:

2x� 3y � z = 6
3x+ 2y + z = 7

Goal: �nd simultaneous solutions: all x; y; z satisfying both equations.
Most general type of system:

a11x1 + � � �+ a1nxn = b1
� � �

am1x1 + � � �+ amnxn = bm

Example: input-output models
x2: Notations and a review of numbers

Set notation: A [B, A \B, A nB
Number systems: natural, integers, rational, reals, complex
Some complex arithmetic:

i =
p�1, pretend i behaves like a real number
complex numbers: standard form z = a+ bi ; addition, subtraction, multiplication
division: complex conjugate z = a� bi

z + w=z+w ; zw=zw
z � z = a2 + b2 (real!) ; z1=z2 = (z1 � z2)=(z2 � z2)

Polar coordinates:
z = a+ bi (complex number) = (a; b) (point in plane) =
(r; �) (distance from origin and angle with (positive) x-axis)

z=a+ bi = r(cos � + i sin �)=rei� , w=c+ di = s(cos�+ i sin�)=sei� , then
zw = rs(cos(� + �) + i sin(� + �)=(rs)ei(�+�). setting z = w yields

zn=rnei(n�) (DeMoivre's formula)

Think backwards; solve zn = w
Need: rn = s , cos(n�) = cos� , sin(n�) = sin� ; i.e.

r = s1=n , n� = �+ 2k�, i.e., � = �=n+2k�=n
So zn = w has n distinct solutions, coming from k = 0; 1; : : : ; n� 1

x3: Gaussian elimination: basic ideas
3x+ 5y = 2
2x+ 3y = 1

Idea use 3x in �rst equation to eliminate 2x in second equation. How? Add a multiply of
�rst equation to second. Then use y-term in new second equation to remove 5y from �rst!
The point: a solution to the original equations must also solve the new equations. The
real point: it's much easier to �gure out the solutions of the new equations!

Streamlining: keep only the essential information; throw away unneeded symbols!
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3   5      2
2   3      1

3x+5y=2
2x+3y=1

replace
with

We get an (augmented) matrix representing the system of equations. We carry out the
same operations we used with equations, but do them to the rows of the matrix.
Three basic operations (elementary row operations):
Eij : switch ith and jth rows of the matrix
Eij(m) : add m times jth row to the ith row
Ei(m) : multiply ith row by m

Terminology: �rst non-zero entry of a row = leading entry; leading entry used to zero
out a column = pivot.
Basic procedure (Gauss-Jordan elimination): �nd non-zero entry in �rst column, switch
up to �rst row (E1j) (pivot in (1,1) position). Use E1(m) to make �rst entry a 1, then use
E1j(m) operations to zero out the other entries of the �rst column. Then: �nd leftmost
entry in remaining rows, switch to second row, use as a pivot to clear out the entries in the
column below it. Continue (forward solving). When done, use pivots to clear out entries
in column above the pivots (back-solving).

Variable in linear system corresponding to a pivot = bound variable; other variables =
free variables

x4: Gaussian elimination: general procedure
The big fact: After elimination, the new system of linear equations have the exact same
solutions as the old system. Because: row operations are reversible!
Reverse of Eij is Eij ; reverse of Eij(m) is Eij(�m); reverse of Ei(m) is Ei(1=m)
So: you can get old equations from new ones; so solution to new equations must solve old
equations as well.

Reduced row form: apply elementary row operations so turn matrix A into one so that
(a) each row looks like (000 � � �0 � � � � � �); �rsdt � = leading entry
(b) leading entry for row below is further to the right

Reduced row echelon form: in addition, have
(c) each leading entry is = 1
(d) each leading entry is the only non-zero number in its column.

RRF can be achieved by forward solving; RREF by back-solving and Ei(m) 's
Elimination: every matrix can be put into RREF by elementary row operations.
Big Fact: If a matrix A is put into RREF by two di�erent sets of row operations, you get
the same matrix.
RREF of an augmented matrix: can read o� solutions to linear system.

1   0   2   0      2
0   1   1   0      1
0   0   0   1      3

means x =3, x =1-x
x =2-2x1

2 34

3 ; x  is free3

Inconsistent systems: row of zeros in coe�cient matrix, followed by a non-zero number
(e.g., 2). Translates as 0=2 ! System has no solutions.
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Rank of a matrix = r(A) = number of non-zero rows in RREF = number of pivots in
RREF.
Nullity of a matrix = n(A) = number of columns without a pivot = # columns � # pivots
rank = number of bound variables, nullity = number of free variables
rank � number of rows, number of columns (at most one pivot per row/column!)
rank + nullity = number of columns = number of variables

A = coe�cient matrix, ~A = augmented matrix (A = m� n matrix)
system is consistent if and only if r(A) = r( ~A)
r(A)=n : unique solution ; r(A)< n : in�nitely many solutions

Chapter 2: Matrix algebra

x1: Matrix addition and scalar multiplication
Idea: take our ideas from vectors. Add entry by entry. Constant multiple of matrix:
multiply entry by entry.
0 = matrix all of whose entries are 0
Basic facts:
A+B makes sense only if A and B are the same size (m�n) matrix
A+B = B+A
(A+B)+C = A+(B+C)
A+0 = A
A+(-1)A = 0
cA has the same size as A
c(dA) = (cd)A
(c+d)A = cA + dA
c(A+B) = cA + cB
1A = A

x2: Matrix multiplication
Idea: don't multiply entry by entry! We want matrix multplication to allow us to write a
system of linear equations as Ax=b ....
Basic step: a row of A, times x, equals an entry of Ax. (row vector (a1; : : : ; an) times
column vector (x1; : : : ; xn) is a1x1 + � � �+ anxn ....) Thisa leads to:
In AB, each row of A is `multiplied' by each column of B to obtain an entry of AB. Need:
the length of the rows of A (= number of columns of A) = length of columns of B (=
number of rows of B). I.e, in order to multiply, A must be m�n, and B must be n�k; AB
is then m�k.
Formula: (i,j)th entry of AB is �n

k=1aikbkj

I = identity matrix; square matrix (n�n) with 1's on diagonal, 0's o� diagonal
Basic facts:
AI = A = IA
(AB)C = A(BC)
c(AB) = (cA)B = A(cB)
(A+B)C = AC + BC
A(B+C) = AB + AC
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In general, however it is **not** **not** true that AB and BA are the same; they are
almost always di�erent! ****

x3: Applications of matrix arithmetic
Ax=b ; A m-byn matrix. Think: x=vector=variable (size n) , Ax = vector = image of x
(size m)
i.e., A takes vectors in Rn and spits out vectors in Rm; it's a function (which we call TA)
from Rn to Rm. More than that, it's a linear function:
TA(ax+by = aTA(x)+bTA(y)

With this new notation, matrix multiplication becomes composition of functions.

What do we do with matrix multiplication? Solve equations!
Ax=b ; basic idea, try to �nd a matrix B with BA=I, so then x = Ix = (BA)x = B(Ax)
= Bb solves the equation. (How to �nd B? Wait.....)

Another application: Markov chains
Idea: in any give month, a �xed percentage people using one product switch to another.

a1 = :3a0 + :4b0 + :2c0 , b1 = :4a0 + :5b0 + :6c0 , c1 = :3a0 + :1b0 + :2c0
New distribution, given initial distribution x, is Ax, where

A = 
.3   .4   .2
.4   .5   .6
.3   .1   .2

More generally, a Markov chain consists of an (initial) probability distribution vector (en-
tries are � 0 and add up to 1) and a transition matrix A (entries are � 0 and each column
adds up to 1). The distribution evolves by multiplication by A. E.g, after 20 iterations,
initial vector x evolves into A20x.

x4: Special matrices and transposes
Elementary matrices:
A row operation (Eij , Eij(m) , Ei(m)) applied to a matrix A corresponds to multiplication
(on the left) by a matrix (also denoted Eij , Eij(m) , Ei(m)) The matrices are obtained
by applying the row operation to the identity matrix In. E.g., the 4�4 matrix E13(�2)
looks like I, except it has a �2 in the (1,3)th entry.
The idea: if A ! B by the elementary row operation E, then B = EA.
So if A ! B ! C by elementary row operations, then C = E2E1A ....
Row reduction is matrix multiplication!

A scalar matrix A has the same number c in the diagonal entries, and 0's everywhere else
(the idea: AB = cB)
A diagonal matrix has all entries zero o� of the (main) diangonal
A upper triangular matrix has entries =0 below the diagonal, a lower triangular matrix is
0 above the diagonal. A triangular matrix is either upper or lower triangular.
A strictly triangular matrix is triangular, and has zeros on the diagonal, as well. They
come in upper and lower 
avors.

The transpose of a matrix A is the matrix AT whose columns are the rows of A (and vice
versa). AT is A re
ected across the main diagonal. (aij)T = (aji) ; (m�n)T = (n�m)
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Basic facts:
(A+ B)T = AT + BT

(AB)T = BTAT

(cA)T = cAT

(AT )T = A
Transpose of an elementary matrix is elementary:
ET
ij = Eij , Eij(m)T = Eji(m) , Ei(m)T = Ei(m)

A matrix A is symmetric if AT = A
An occasionally useful fact: AE, where E is an elementary matrix, is the result of an
elementary column operation on A .

The transpose and rank:
For any pair of compatible matrices, r(AB) � r(A)
Consequences: r(AT ) = r(A) for any matrix A; r(AB) � r(B), as well.

x5: Matrix inverses
One way to solve Ax=b : �nd a matrix B with BA=I . When is there such a matrix?
(Think about square matrices...) A an n-by-n matrix ; n=r(I)=r(BA)�r(A)�n implies
that r(A)=n . This is necessary, and it is also su�cient!
r(A)=n, then the RREF of A has n pivots in n rows and columns, so has a pivot in every
row, so the RREF of A is I. But! this means we can get to I from A by row operations,
which correspond to multiplication by elementary matrices. *So* multiply A (on the left)
by the right elementary matrices and you get I; call the product of those matrices B and
you get BA=I !
It turns out (by using the transpose) that AB=I as well!
A matrix B is an inverse of A if AB=I and BA=I; it turns out, the inverse of a matrix is
always unique. We call it A�1 (and call A invertible).
Finding A�1 : row reduction! (of course...)
Build the "super-augmented" matrix (AjI) (the matrix A with the identity matrix next to
it). Row reduce A, and carry out the operations on the entire row of the S-A matrix (i.e.,
carry out the identical row operations on I). Wnem done, if invertible+ the left-hand side
of the S-A matrix will be I; the right-hand side will be A�1 !
I.e., if (AjI) ! (IjB) by row operations, then I=BA .

Basic facts:
(A�1)�1 = A
if A and B are invertible, then so is AB, and (AB)�1 - B�1A�1

(cA)�1 = (1=c)A�1

(AT )�1 = (A�1)T

If A is invertible, and AB = AC, then B = C; if BA = CA, then B = C.
Inverses of elementary matrices:
E�1ij = Eij , Eij(m)�1 = Eij(�m) , Ei(m)�1 = Ei(1=m)

Highly useful formula: for a 2-by-2 matrix,

A= a   b
c   d

d   -b
-c   aD

D=ad-bc A-1and 1, =
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(Note: need D=ad-bc 6= 0 for this to work....)
Some conditions for/consequences of invertibility: the following are all equivalent (A =
n-by-n matrix).
1. A is invertible,
2. r(A) = n.
3. The RREF of A is In.
4. Every linear system Ax=b has a unique solution.
5. For one choice of b, Ax=b has a unique solution (i.e., if one does, they all do...).
6. The equation Ax=0 has only the solution x=0.
7. There is a matrix B with BA=I.

The euivalence of 4. and 6. is sometimes stated as Fredholm's alternative: Either every
equation Ax=b has a unique solution, or the equation Ax=0 has a non-trivial solution
(and only one of tyhe alternatives can occur).
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