
M340L Matrices, Old! Exam 2

Name:

Show all work.

4. (15 pts.) Let V=R3 (3-dimensional Euclidean space) and let

W = f(x; y; z) 2 R3 : 2x + 3y + 8z = 0g.

Show that W is a subspace of V.

5. (10 pts.) Suppose L:R3 ! R2 is a linear transformation, and suppose
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2. The system of equations
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If we call the left-hand side of the �rst pair of matrices A, use this row-reduction
information to �nd the dimensions and bases for the subspaces R(A), N(A), and R(AT).

(5 pts. for each subspace.)

3. Do the vectors
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Are they linearly independent?
Can you �nd a subset of this collection of vectors which forms a basis for R3?
(10 pts. for spanning, 10 pts. for lin indep, 5 pts. for basis.)
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(5 pts. each).
1. (20 pts.) Find, using any method (other than psychic powers), the determinant of the
matrix
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Is this matrix invertible?

2. (15 pts.) Explain why the set of vectors

W = f(x; y; z) j x+ y + 2z = 1g

is not a subspace of R3.

3. (25 pts.) Show that the system of equations Ax = b, where
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is not consistent. Find the least squares solution to this sytem, i.e., the value of Ax
closest to b.

4.(20 pts.) For the matrix
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�nd bases for, and the dimensions of, the row, column, and null spaces of A.

5. (20 pts.) Find all of the solutions to the equation Ax = b, where
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5. A friend of yours runs up to you and says `Look I've found these three vectors v1; v2; v3
in R2 that are linearly independent!' Explain how you know, without even looking at the
vectors, that your friend is wrong (again).
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