Math 314/814

Topics for second exam

Technically, everything covered by the first exam plus

Subspaces, bases, dimension, and rank
Basic idea: W C R" is a subspace if whenever ¢ € R and u,v € W, we always have cu,u+v € W
(W is “closed” under addition and scalar multiplication).

Examples: {(x,y,2) € R® : z = 0} is a subspace of R3
{(z,y,2) € R®: z =1} is not a subspace of R?

Basic construction: vy,--- ,v, € V

W ={ayv1 +---ayv, : aq,...,a, € R = all linear combinations of vy, -+ ,v, = span{vy,--- ,v,}
= the span of vy,--- ,v, , is a subspace of R¥

Basic fact: if wy,... ,wy € span{vy,--- ,v,}, then span{wy, - ,wx} C span{vy, -+ ,v,}

Subspaces from matrices

column space of A = col(A) = span{the columns of A}

row space of A = row(A) = span{(transposes of the ) rows of A}

nullspace of A = null(A) = {x € R" : Az =0}

(Check: null(A) is a subspace!)

Alternative view Az = lin comb of columns of A, so is in col(A); in fact, col(A) = {Azx : z € R"}.
So col(A) is the set of vectors b for which Az = b has a solution. Any two solutions Az = b = Ay
have A(x —y) = AX — Ay =b—b=0, sox —y is in null(A4). So the collection of all solutions to
AX = b are (particular solution)+(vector in null(A)). So col(A) tells is which SLEs have solutions,
and null(A) tells us how many solutions there are.

Bases:

A basis for a subspace V is a set of vectors vy,... ,v, so that (a) they are linearly independent,
and (b) V=span{vy,... ,v,} .

The idea: a basis allows you to express every vector in the subspace as a linear combination in
exactly one way.

A system of equations Az = b has a solution iff b €col(A) .
If Azg = b, then every other solution to Az = b is = x¢ + z, where z €null(4) .

The row, column, and nullspaces of a matrix A are therefore useful spaces (they tell us useful
things about solutions to the corresponding linear system), so it is useful to have bases for them.

Finding a basis for the row space.

Basic idea: if B is obtained from A by elementary row operations, then row(A) =row(B).

So of R is the reduced row echelon form of A, row(R) =row(A)

But a basis for row(R) is quick to identify; take all of the non-zero rows of R ! (The zero rows
are clearly redundant.) These rows are linearly independent, since each has a ‘special coordinate’
where, among the rows, only it is non-zero. That coordinate is the pivot in that row. So in any
linear combination of rows, only that vector can contribute something non-zero to that coordinate.
Consequently, in any linear combination, that coordinate is the coefficient of our vector! So, if
the lin comb is 0, the coefficient of our vector (i.e., of each vector!) is 0.

Put bluntly, to find a basis for row(A), row reduce A, to R; the (transposes of) the non-zero rows
of R form a basis for row(A).



This in turn gives a way to find a basis for col(A), since col(A4) =row(AT) !

To find a basis for col(A), take AT, row reduce it to S; the (transposes of) the non-zero rows of S
form a basis for row(AT) =col(A) .

This is probably in fact the most useful basis for col(A), since each basis vector has that special
coordinate. This makes it very quick to decide if, for any given vector b, Ax = b has a solution.
You need to decide if b can be written as a linear combination of your basis vectors; but each
coefficient will be the coordinate of b lying at the special coordinate of each vector. Then just
check to see if that linear combination of your basis vectors adds up to b !

There is another, perhaps less useful, but faster way to build a basis for col(A); row reduce A to
R, locate the pivots in R, and take the columns of A (Note: A, not R !) that correspond to the
columns containing the pivots. These form a (different) basis for col(A).

Why? Imagine building a matrix B out of just the pivot columns. Then in row reduced form there
is a pivot in every column. Solving Bv = 0 in the case that there are no free variables, we get
v = 0, so the columns are linearly independent. If we now add a free column to B to get C, we
get the same collection of pivots, so our added column represents a free variable. Then there are
non-trivial solutions to Cv = 6, so the columns of C are not linearly independent. This means
that the added columns can be expressed as a linear combination of the bound columns. This is
true for all free columns, so the bound columns span col(A).

Finally, there is the nullspace null(A). To find a basis for null(A):

Row reduce A to R, and use each row of R to solve Rz = 0 by expressing each bound variable in
terms of the frees. collect the coefficients together and write x = z;,v1 + -+ - + 3, vy where the z;,
are the free variables. Then the vectors vy,... ,v; form a basis for null(A).

Why? By construction they span null(A); and just as with our row space procedure, each has a
special coordinate where only it is not 0 (the coordinate corresponding to the free variable!).

Note: since the number of vectors in the bases for row(A) and col(A) is the same as the number of
pivots ( = number of nonzero rows in the RREF) = rank of A, we have dim(row(A))=dim(col(A))=r(A).
And since the number of vectors in the basis for null(A) is the same as the number of free variables

for A ( = the number of columns without a pivot) = nullity of A (hence the name!), we have
dim(null(A)) = n(A) = n — r(A) (where n=number of columns of A).

So, dim(col(A)) + dim(null(A)) = the number of columns of A .

More on Bases.

A basis for a subspace V of R¥ is a set of vectors vy, ... ,v, so that (a) they are linearly indepen-
dent, and (b) V=span{vy,... ,v,} .

Example: The vectors e; = (1,0,...,0),e = (0,1,0,...,0),... ,e, = (0,...,0,1) are a basis for
R"”, the standard basis.

To find a basis: start with a collection of vectors that span, and repeatedly throw out redundant
vectors (so you don’t change the span) until the ones that are left are linearly independent. Note:
each time you throw one out, you need to ask: are the remaining ones lin indep?

Basic fact: If vq,... ,v, is a basis for V, then every v € V can be expressed as a linear combination
of the v;’s in exactly one way. If v = ajvqy + -+ + a,v,, we call the a; the coordinates of v
with respect to the basis vq,... ,v, . We can then think of v as the vector (ai,...a,)?T = the
coordinates of v with respect to the basis vy, ... ,v,, so we can think of V as “really” being R".

The Basis Theorem: Any two bases of the same vector space contain the same number of vectors.
(This common number is called the dimension of V', denoted dim(V) .)
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Reason: if vy,... ,v, is a basis for V and wy,... ,w € V are linearly independent, then k < n

As part of that proof, we also learned:
If v,...,v, is a basis for V and wi,... ,w, are linearly independent, then the spanning set
Vlyern ,Un,W1,... , W, for V can be thinned down to a basis for V by throwing away v;’s .

In reverse: we can take any linearly independent set of vectors in V', and add to it from any
basis for V', to produce a new basis for V.

Some consequences:
If dim(V)=n, and W C V is a subspace of V, then dim(W)<n

If dim(V)=n and vy,... ,v, € V are linearly independent, then they also span V'
If dim(V)=n and vy,... ,v, € V span V, then they are also linearly independent.

Linear Transformations.

T :R™ — R™ is a linear transformation if T'(cu + dv) = ¢T'(u) + dT'(v) for all ¢,d € R, u,v € R".
This can be verified in two steps: check T'(cu) = ¢T'(u) for all c € R and v € R", and T'(u + v) =
T(u) + T(v) for all u,v € R™.

Example: Ty : R" — R™, Ty(v) = Awv, is linear
T : {functions defined on [a,b]} — R, T'(f) = f(b), is linear

T:R? - R, T(z,y) = x — 2y + 3y is not linear!

Basic fact: every linear transf T : R” — R™ is T' = T4 for some matrix A: A = the matrix with
i-th column T'(e;), e; = the i-th coordinate vector in R™.

Using the idea of coordinates for a subspace, we can extend these notions to linear transformations
T :V — W ; thinking of vectors as their coordinates, each T" is “really” T4 for some matrix A.

The composition of two linear transformations is linear; in fact T4 o T = T4p. So matrix
multiplication is really function composition!
If A is invertible, then T4 is an invertible function, with inverse Tgl =Ty-1.

Application: Markov chains.

In many situations we wish to study a characteristic (or characteristics) of a population, which
changes over time. Often the rule for how the quantities change may be linear; our goal is to
understand what the long term behavior of the situation is.

Initially, the characteristic of the population (think: favorite food, political affiliation, choice of
hair color) is distributed among some collection of values; we represent this initial state as a
vector Uy giving the fraction of the whole population which takes each value. (The entries of ¥y
sum to 1.) As time progresses, with each fixed time interval the distribution of the population
changes by multiplication by a transition matriz A, whose (i,j) entry a, ; records what fraction
of the population having the i-th characteristic chooses to switch to the j-th characteristic. Since
every person/object in the population ends up with some characteristic, each column of A (which
describes how the i-th charactersitc gets redistributed) must sum to 1. After the tick of the clock,
the distribution of our initial population, given by #j, changes to ¥; = Aty. After n ticks of the
clock, the population districution is given by #,, = A" .

The main questions to answer are: does the population distribution stabilize over time? And if
so, what does it stabilize to? A stable distribution ¥ is one which is unchanged as time progresses:
Av = ¢. This can be determined by reinterpreting stability as (A — I)v = 0, i.e., ¥ lies in the
nullspace of the matrix A — I. Which we can compute! Our solution should also have all entries
non-negative (to reflect that its entries represent parts of a whole) and add up to 1.
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It is a basic fact that every transition vector has a stable solution. This is because ATZ = Z |
where 7 is the all-1’s vector. So AT — I = (A — I)T is not invertible, so A — I is not invertible!
Moreover, under very mild assumptions (e.g., no entry of A is 0) every initial state ¥y, under
repeated multiplication by A, will converge to the exact same stable distribution. Which we can
compute by the method above!

Application: counting paths in a graph.

A graph is a collection of points (= wvertices) {Vi,... ,V,} which are connected (in pairs) by edges.
We can encode a graph using an n x n matrix, its incidence matriz A, whose (i, j)*" entry is the
number of edges between V; and V;. (Note: this matrix is symmetric). If we work with a directed
graph, in which edges have a direction, our incidence matrix counts the number of edges going
from V; to V; (this need not be symmetric).

The incidence matrix A = (a;;) can be used to compute the number of distinct paths of any fixed
length (length = the number of edges (not necessarilty distinct!) that we cross) running from one
vertex to another (or the same vertex!). This is because the collection of all length-two paths from
Vi to V; can be partitioned according to which vertex is in the middle, and the number of such
paths with middle vertex Vj, is a;par;. But the sum of these is the (i,4)t" entry of A% ! By a
similar line of reasoning, we can establish that the number of distinct length & paths from V; to
Vj is equal to the (i, j )t entry of A*. If we are working with the incidence matrix of a directed
graph, this number is the number of distinct length % directed paths from V; to V; (that is, the
directions all match up, always pointing in the forward direction).

Such calculations are routinely used in many applications, for example, in physics, where a ‘path
integral” averages quantities over all paths (in a crystal lattice, for example) between a pair of
points. We can also extract useful theoretical information about a graph, for example, the number
of triangles (loops of length 3) is equal to the sum of the diagonal entries of A% (which counts the
number of paths of length 3 that start and end at the same vertex) times one-third (since we count
each triangle 3 times, one for each possible starting point!).

Chapter 4: Eigenvalues, eigenvectors, and determinants
Determinants.

(Square) matrices come in two flavors: invertible (all Az = b have a solution) and non-invertible
(Az = 0 has a non-trivial solution). It is an amazing fact that one number identifies this difference;
the determinant of A.

a

For 2x2 matrices A = b ), this number is det(A)=ad — be; if # 0, A is invertible, if =0, A is

d
non-invertible (=singular).
For larger matrices, there is a similar (but more complicated formula):

A= n x n matrix, M,;(A) = matrix obtained by removing ith row and jth column of A.
det(A) = X7 (=1)"a; det(M;1(A))
(this is called expanding along the first column)

Amazing properties:

If A is upper triangular, then det(A) = product of the entries on the diagonal
If you multiply a row of A by ¢ to get B, then det(B) = cdet(A)

If you add a mult of one row of A to another to get B, then det(B) = det(A)
If you switch a pair of rows of A to get B, then det(B) = —det(A)

In other words, we can understand exactly how each elementary row operation affects the deter-
minant. In part, A is invertible iff det(A) # 0.



In fact, we can use row operations to calculate det(A) (since the RREF of a matrix is upper
triangular). We just need to keep track of the row operations we perform, and compensate for the
changes in the determinant;
det(A) = (1/c)det(E;(c)A) , det(A) = (—1)det(E;; A)
More interesting facts:
det(AB) = det(A)det(B) ; det(AT) = det(A) ; det(A~1) = [det(A)]~*
We can expand along other columns than the first: for any fixed value of j (= column),
det(A) = Ef‘:l(—1)i+jaijdet(Mij(A))
(expanding along jth column)
And since det(AT) = det(A), we could expand along rows, as well.... for any fixed i (= row),
det(4) = E?Zl(—1)i+jaijdet(Mij(A))
A formula for the inverse of a matrix:
If we define A, to be the matrix whose (4, j)th entry is (—1)""det(M;;(A)), then AT A = (detA)l
(AT is called the adjoint of A). So if det(A)# 0, then we can write the inverse of A as

1
~ det(A)
The same approach allows us to write an explicit formula for the solution to Ax = b, when A is
invertible:
If we write B; = A with its ith column replaced by b, then the (unique) solution to Az = b has ith
coordinate equal to
det(Bi)
det(A)

Eigenvectors and Eigenvalues.

—1

AT (This is very handy for 2x2 matrices...)

For A an nxn matrix, v is an eigenvector (e-vector, for short) for A if v # 0 and Av = v for some
(real or complex, depending on the context) number A. A is called the associated eigenvalue for A.
A matrix which has an eigenvector has lots of them; if v is an eigenvector, then so is 2v, 3v, etc.
On the other hand, a matrix does not have lots of eigenvalues:

If X\ is an e-value for A, then (A — A)v=0 for some non-zero vector v. So null(A\] — A) # {0}, so
det(A — A) = 0. But det(tI — A) = xa(t), thought of as a function of ¢, is a polynomial of degree
n, so has at most n roots. So A has at most n different eigenvalues.

xa(t) = det(tI — A) is called the characteristic polynomial of A.

null(A — A) = E\(A) is (ignoring 0) the collection of all e-vectors for A with e-value A. It is called
the eigenspace (or e-space) for A corresponding to A. An eigensystem for a (square) matrix A is a
list of all of its e-values, along with their corresponding e-spaces.

One somewhat simple case: if A is (upper or lower) triangular, then the e-values for A are exactly
the diagonal entries of A, since tI — A is also triangular, so its determinant is the product of its
diaginal entries.

We call dim(null(A — A)) the geometric multiplicity of A, and the number of times \ is a root of
XA(t) (= number of times (t — \) is a factor) = m(\) = the algebraic multiplicity of A .

Some basic facts:

The number of real eigenvalues for an n X n matrix is < n .

counting multiplicity and complex roots the number of eigenvalues =n .

For every e-value A, 1< the geometric multiplicity < m(\).

(non-zero) e-vectors having all different e-values are linearly independent.



Similarity and diagonalization
The basic idea: to understand a Markov chain x,, = A™xg, you need to compute large powers of
A. This can be hard! There ought to be an easier way. Eigenvalues (or rather, eigenvectors) can
help (if you have enough of them).

The matrix A = <§ i) has e-values 1 and 6 (Check!) with corresponding e-vectors (1,—1) and

(2,3) . This then means that

3 2 1 2 1 2 1 0 . )
<3 4> <_1 3>—<_1 3> <O 6>,Whlchwewr1teAP—PD,

where P is the matrix whose colummns are our e-vectors, and D is a diagonal matrix. Written
slightly differently, this says A = PDP~! .

We say two matrices A and B are similar if there is an invertible matrix P so that AP = PB .
(Equivalently, P"1AP = B, or A = PBP~'.) A matrix A is diagonalizable if it is similar to a
diagonal matrix.

We write A ~ B is A is similar to B, i.e., P"'AP = B. We can check:

A~ A;if A~ Bthen B~ A;if A~ Band B ~ C, then A ~ C . (We sat that “~” is an
equivalence relation.)

Why do we care about similarity? We can check that if A = PBP~!, then A" = PB"P~! . If B
is quick to calculate (e.g., if B is diagonal; B™ is then also diagonal, and its diagonal entries are
the powers of B’s diagonal entries), this means A" is also fairly quick to calculate!

Also, if A and B are similar, then they have the same characteristic polynomial, so they have
the same eigenvalues. They do, however, have different eigenvectors; in fact, if AP = PB and
Bv = Av, then A(Pv) = A(Pv), i.e., the e-vectors of A are P times the e-vectors of B . Similar
matrices also have the same determinant, rank, and nullity.

These facts in turn tell us when a matrix can be diagonalized. Since for a diagonal matrix D, each
of the standard basis vectors e; is an e-vector, R™ has a basis consisting of e-vectors for D. If A is
similar to D, via P, then each of Pe; = ith column of P is an e-vector. But since P is invertible, its
columns form a basis for R™, as well. SO there is a basis consisting of e-vectors of A. On the other
hand, such a basis guarantees that A is diagonalizable (just run the above argument in reverse...),
so we find that:

(The Diagonalization Theorem) An n x n matrix A is diagonalizable if and only if there is basis of
R™ consisting of eigenvectors of A.

And one way to guarantee that such a basis exists: If A is n x n and has n distinct eigenvalues,
then choosing an e-vector for each will always yield a linear independent coillection of vectors (so,
since there are n of them, you get a basis for R™). So:

If Ais n x n and has n distinct (real) eigenvalues, A is diagonalizable. In fact, the dimensions of
all of the eigenspaces for A (for real eigenvalues \) add up to n if and only if A is diagonalizable.



