Math 314/814

Topics for first exam

Chapter 2: Systems of linear equations

Some examples
Systems of linear equations:
20 —3y—2=6
3r+2y+2="7
Goal: find simultaneous solutions: all x,y, z satisfying both equations.
Most general type of system:
a11x1 + -+ a1y = bl

Am1T1 + * + QypTp = bm
Gaussian elimination: basic ideas

x4+ 5y =2

2243y =1
Idea use 3z in first equation to eliminate 2z in second equation. How? Add a multiply of first
equation to second. Then use y-term in new second equation to remove 5y from first!
The point: a solution to the original equations must also solve the new equations. The real point:
it’s much easier to figure out the solutions of the new equations!

Streamlining: keep only the essential information; throw away unneeded symbols!

3x+5y=2 replace 3 512
2x+3y=1 with 2 3|1

We get an (augmented) matrix representing the system of equations. We carry out the same
operations we used with equations, but do them to the rows of the matrix.
Three basic operations (elementary row operations):

E;; : switch ith and jth rows of the matrix

E;;(m) : add m times jth row to the ith row

E;(m) : multiply ith row by m
Terminology: first non-zero entry of a row = leading entry; leading entry used to zero out a
column = pivot.
Basic procedure (Gauss-Jordan elimination): find non-zero entry in first column, switch up to first
row (Ey;) (pivot in (1,1) position). Use E;(m) to make first entry a 1, then use E4;(m) operations
to zero out the other entries of the first column. Then: find leftmost entry in remaining rows, switch
to second row, use as a pivot to clear out the entries in the column below it. Continue (forward
solving). When done, use pivots to clear out entries in column above the pivots (back-solving).

Variable in linear system corresponding to a pivot = bound variable; other variables = free
variables

Gaussian elimination: general procedure

The big fact: After elimination, the new system of linear equations have the exact same solu-
tions as the old system. Because: row operations are reversible!

Reverse of E;; is E;;; reverse of E;;(m) is E;;(—m); reverse of E;(m) is E;(1/m)

So: you can get old equations from new ones; so solution to new equations must solve old equations
as well.



Reduced row form: apply elementary row operations so turn matrix A into one so that
(a) each row looks like (000 - -0 % - - x); firsdt * = leading entry
(b) leading entry for row below is further to the right
Reduced row echelon form: in addition, have
(c) each leading entry is = 1
(d) each leading entry is the only non-zero number in its column.
RRF can be achieved by forward solving; RREF by back-solving and E;(m) ’s
Elimination: every matrix can be put into RREF by elementary row operations.
Big Fact: If a matrix A is put into RREF by two different sets of row operations, you get the same
matrix.
RREF of an augmented matrix: can read off solutions to linear system.

1020]|2 _ _
0110]f1 means X3 %=1
oo0o01]l3 X=2-2X; ; X,is free

Inconsistent systems: row of zeros in coefficient matrix, followed by a non-zero number (e.g., 2).
Translates as 0=2 ! System has no solutions.

Rank of a matrix = r(A) = number of non-zero rows in RREF = number of pivots in RREF.
Nullity of a matrix = n(A) = number of columns without a pivot = # columns — # pivots
rank = number of bound variables, nullity = number of free variables

rank < number of rows, number of columns (at most one pivot per row/column!)

rank 4 nullity = number of columns = number of variables

A = coefficient matrix, A = augmented matrix (A = m X n matrix)

system is consistent if and only if r(A) = r(A)
r(A)=n : unique solution ; r(A)< n : infinitely many solutions

Spanning sets and linear independence

We can interpret an SLE in terms of (column) vectors; writing v; = ith column of the coefficient
matrix, and b=the column of target values, then our SLE really reads as a single equation xiv; +
-+ 4 xpv, =b. The lefthand side of this equation is a linear combination of the vectors vy, ... ,v,,
that is, a sum of scalar multiples. Asking if the SLE has a solution is the same as asking if b is a
linear combination of the v;.

This is an important enough concept that we introduce new terminology for it; the span of a
collection of vectors, span(vy, ... ,v,) is the collection of all linear combinations of the vectors. If
the span of the (m x 1) column vectors vy, ... ,v, is all of R™, we say that the vectors span R™.
Asking if an SLE has a solution is the same as asking if the target vector is in the span of the
column vectors of the coefficient matrix.

The flipside of spanning is linear independence. A collection of vectors vq,... ,v, is linearly in-
dependent if the only solution to zjv; + -+ + z,v, = 0 (the O-vector) is 1 = -+ =z, = 0
(the “trivial” solution). If there is a non-trivial solution, then we say that the vectors are linearly
dependent. If a collection of vectors is linearly dependent, then choosing a non-trivial solution
and a vector with non-zero coeflicient, throwing everything else on the other side of the equation
expresses one vector as a linear combination of all of the others. Thinking in terms of an SLE, the
columns of a matrix are linearly dependent exactly when the SLE with target 0 has a non-trivial
solution, i.e., has more than one solution. It has the trivial (all 0) solution, so it is consistent, so
to have more than one, we need the the RREF for the matrix to have a free variable, i.e., the rank
of the coefficient matrix is less than the number of columns.



Some applications

Balancing chemical reactions:
In a chemical reaction, some collection of molecules is converted into some other collection of
molecules. The proportions of each can be determined by solving an SLE:

E.g., when ethane is burned, x CyHg and y O is converted into z C'O; and w HO. Since the
number of each element must be the same on both sides of the reaction, we get a system of equations
C:2x=z;H:6x=2w;0:2y=w.

which we can solve. More complicated reactions, e.g., PbOy + HCl — PbCly + C Loy + H50, yield
more complicated equations, but can still be solved using the techniques we have developed.

Network Flow:

We can model a network of water pipes, or trafic flowing in a city’s streets, as a graph, that is, a
collection of points = vertices (=intersections=junctions) joined by edges = segments (=streets =
pipes). Monitoring the flow along particular edges can enable us to know the flow on every edge,
by solving a system of equations; at every vertex, the net flow must be zero. That is, the total flow
into the vertex must equal the total flow out of the vertex. Giving the edges arrows, depicting the
direction we think traffic is flowing along that edge, and labeling each edge with either the flow
we know (monitored edge) or a variable denoting the flow we don’t, we have a system of equations
(sum of flows into a vertex) = (sum of flows out of the vertex). Solving this system enables us to
determine the value of every variable, i.e., the flow along every edge. A negative value means that
the flow is opposite to the one we expected.

Chapter 3: Matrices
Matrix addition and scalar multiplication

Idea: take our ideas from vectors. Add entry by entry. Constant multiple of matrix: multiply
entry by entry.
0 = matrix all of whose entries are 0
Basic facts:
A+B makes sense only if A and B are the same size (mxn) matrix

A+B = B+A
(A4+B)+C = A+(B+C)
A+0=A

A+(-1)A =0

cA has the same size as A
c(dA) = (cd)A

(c+d)A = cA + dA
c(A+B) =cA + cB

1A = A

Matrix multiplication

Idea: don’t multiply entry by entry! We want matrix multplication to allow us to write a system
of linear equations as Ax=Db ....

Basic step: a row of A, times x, equals an entry of Ax. (row vector (ay,...,a,) times column
vector (21,... ,%,) 18 a1y + -+ + apx, ....) This leads to:

In AB, each row of A is ‘multiplied’ by each column of B to obtain an entry of AB. Need: the
length of the rows of A (= number of columns of A) = length of columns of B (= number of rows
of B). Le, in order to multiply, A must be mxn, and B must be nxk; AB is then mxk.

Formula: (i,j)th entry of AB is X}_;a;1bx;



I = identity matrix; square matrix (nxn) with 1’s on diagonal, 0’s off diagonal
Basic facts:

AT=A=1A

(AB)C = A(BC)

c(AB) = (cA)B = A(cB)

(A+B)C = AC + BC

A(B+C) = AB + AC

In general, however it is **not** **not** true that AB and BA are the same; they are almost
always different! ****

Special matrices and transposes

Elementary matrices:

A row operation (E;; , E;;(m) , E;(m)) applied to a matrix A corresponds to multiplication (on
the left) by a matrix (also denoted E;; , E;;(m) , E;(m)) The matrices are obtained by applying
the row operation to the identity matrix I,,. E.g., the 4x4 matrix E3(—2) looks like I, except it
has a —2 in the (1,3)th entry.

The idea: if A — B by the elementary row operation E, then B = EA.

So if A — B — C by elementary row operations, then C = FyE1A ...

Row reduction is matrix multiplication!

A scalar matrix A has the same number ¢ in the diagonal entries, and 0’s everywhere else (the
idea: AB = cB)

A diagonal matrix has all entries zero off of the (main) diangonal

A upper triangular matrix has entries =0 below the diagonal, a lower triangular matrix is 0 above
the diagonal. A triangular matrix is either upper or lower triangular.

A strictly triangular matrix is triangular, and has zeros on the diagonal, as well. They come in
upper and lower flavors.

The transpose of a matrix A is the matrix A7 whose columns are the rows of A (and vice versa).
AT is A reflected across the main diagonal. (aij)? = (aji) ; (mxn)T = (nxm)
Basic facts:

(A+B)T = AT +- BT

(AB)T = BT AT
(cA)T = cAT
(ATYT = A

Transpose of an elementary matrix is elementary:

El = Eij , Eij(m)" = Eji(m) , E;(m)" = E;(m)

A matrix A is symmetric if AT = A

An occasionally useful fact: AE, where E is an elementary matrix, is the result of an elementary
column operation on A .

The transpose and rank:

For any pair of compatible matrices, r(AB) < r(A)
Consequences: (A7) = r(A) for any matrix 4; r(AB) < r(B), as well.

Matrix inverses

One way to solve Ax=Db : find a matrix B with BA=I . When is there such a matrix?

(Think about square matrices...) A an n-by-n matrix ; n=r(I)=r(BA)<r(A)<nimplies that r(A)=n
. This is necessary, and it is also sufficient!

r(A)=n, then the RREF of A has n pivots in n rows and columns, so has a pivot in every row, so
the RREF of A is I. But! this means we can get to I from A by row operations, which correspond

4



to multiplication by elementary matrices. *So* multiply A (on the left) by the correct elementary
matrices and you get I; call the product of those matrices B and you get BA=I !
A matrix B is an inverse of A if AB=I and BA=I; it turns out, the inverse of a matrix is always
unique. We call it A=1 (and call A invertible).
Finding A~! : row reduction! (of course...)
Build the ”super-augmented” matrix (A|I) (the matrix A with the identity matrix next to it). Row
reduce A, and carry out the operations on the entire row of the S-A matrix (i.e., carry out the
identical row operations on I). Wnem done, if invertible+ the left-hand side of the S-A matrix will
be I; the right-hand side will be A= !
Le., if (A|I) — (I|B) by row operations, then I=BA .
Basic facts:

(A-H =4

if A and B are invertible, then so is AB, and (AB)~! - B~1A4~!

(cA)~t = (1/c)A~1

(AT)—l — (A—I)T

If A is invertible, and AB = AC, then B = C; if BA = CA, then B = C.
Inverses of elementary matrices:

B! = By, Ey(m)™ = Ey(—m) , E(m)~* = E:(1/m)
Highly useful formula: for a 2-by-2 matrix,

ab
cd

(Note: need D=ad-bc # 0 for this to work....)
Some conditions for/consequences of invertibility: the following are all equivalent (A = n-by-n

A=

) and D=ad-bc , A'lzi(d 'b)
D|-c a

matrix).
1. A is invertible,
2. r(A) = n.
3. The RREF of A is I,,.
4. Every linear system Ax=Db has a unique solution.
5. For one choice of b, Ax=Db has a unique solution (i.e., if one does, they all do...).
6. The equation Ax=0 has only the solution x=0.
7. There is a matrix B with BA=I.

The equivalence of 4. and 6. is sometimes stated as Fredholm’s alternative: Either every
equation Ax=b has a unique solution, or the equation Ax=0 has a non-trivial solution (and only
one of the alternatives can occur).



