Quiz number 7 AS IT SHOULD HAVE BEEN Solutions

Use a superaugmented matrix to find a/the matrix B whose nullspace is equal to the column space of the matrix

$$A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & -2 & 7 \\ 2 & -1 & 8 \end{pmatrix}$$
, and use this to decide if the linear system $A\vec{x} = \vec{b}$

is consistent, for each of the vectors
$$\vec{b} = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix}$$
, $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

To find the matrix B, we row reduce!

$$\begin{pmatrix} 2 & 1 & 4 & | & 1 & 0 & 0 \\ 1 & -2 & 7 & | & 0 & 1 & 0 \\ 2 & -1 & 8 & | & 0 & 0 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & -2 & 7 & | & 0 & 1 & 0 \\ 2 & 1 & 4 & | & 1 & 0 & 0 \\ 2 & -1 & 8 & | & 0 & 0 & 1 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} 1 & -2 & 7 & | & 0 & 1 & 0 \\ 0 & 5 & -10 & | & 1 & -2 & 0 \\ 0 & 3 & -6 & | & 0 & -2 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & -2 & 7 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 1/5 & -2/5 & 0 \\ 0 & 3 & -6 & | & 0 & -2 & 1 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} 1 & -2 & 7 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 1/5 & -2/5 & 0 \\ 0 & 0 & 0 & | & -3/5 & -4/5 & 1 \end{pmatrix} \Longrightarrow \begin{pmatrix} 1 & -2 & 7 & | & 0 & 1 & 0 \\ 0 & 1 & -2 & | & 1/5 & -2/5 & 0 \\ 0 & 0 & 0 & | & -3 & -4 & 5 \end{pmatrix}$$

[The last step was for mostly cosmetic reasons.]

This means that consistent systems $A\vec{x} = \vec{b}$ require

 $(-3 \quad -4 \quad 5)\vec{b}=(0)$ [in order for the REF to have last row $(-0 \quad 0 \quad 0 \quad | \quad 0)$], that is, $\mathrm{Col}(A)=\mathrm{Null}(-3 \quad -4 \quad 5)$. Then since

$$(-3 \quad -4 \quad 5) \begin{pmatrix} 3\\4\\5 \end{pmatrix} = -9 - 16 + 25 = 0, \ A\vec{x} = \begin{pmatrix} 3\\4\\5 \end{pmatrix} \text{ is consistent!}$$

$$(-3 \quad -4 \quad 5) \begin{pmatrix} 2\\3\\4 \end{pmatrix} = -6 - 12 + 20 = 2 \neq 0, \ A\vec{x} = \begin{pmatrix} 2\\3\\4 \end{pmatrix} \text{ is not consistent.}$$

$$(-3 \quad -4 \quad 5) \begin{pmatrix} 1\\2\\3 \end{pmatrix} = -3 - 8 + 15 = 4 \neq 0, \ A\vec{x} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} \text{ is not consistent.}$$