Math 310 Homework 1
Due Tuesday, September 11

1. (Childs, p11, E2) Use mathematical induction to show that for every \(n \geq 1 \),
\[
\sum_{i=1}^{n} i^3 = 1^3 + 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2} \right)^2 .
\]

2. Use mathematical induction to show that, for every \(n \geq 0 \),
\[
4 \cdot 5^n + 7 \cdot (27)^n \text{ is a multiple of } 11.
\]

3. Use mathematical induction to show that, for every \(n \geq 0 \),
\[
55 \cdot (44)^n - 6 \cdot (23)^n \text{ is a multiple of } 7 .
\]

4. (Childs, p12, E8) Use mathematical induction to show that for every odd number \(m \geq 1 \),
\[
4^m + 5^m \text{ is a multiple of } 9 .
\]
(Hint: don’t induct on \(m \) !)

5. (Childs, p.15, E4) Use complete induction to show that for any convex polygon with \(n \) sides, the sum of the angles inside the polygon is (in radians) \((n - 2)\pi \). [FYI: convex means, essentially, that the line segment running between any two non-adjacent vertices of the polygon lies entirely on the inside of the polygon.]

6. (Childs, p.18, E3) Suppose that, for some fixed integer \(N \), a set \(S \) of integers has the property that \(s \leq N \) for every \(s \in S \). Show that \(S \) has a largest element, i.e., there is an \(s_0 \in S \) so that \(s \leq s_0 \) for every \(s \in S \). (Hint: read Childs’ hint!)