Math 208H, Section 1

Some practice problems for the Final Exam

A1. Find the length of the parametrized curve

$$\vec{r}(t) = (t^6 \cos t, t^6 \sin t) \qquad , \qquad 0 \le t \le \pi$$

A2. Find the equation of the plane tangent to the graph of

$$z = f(x, y) = xe^y - \cos(2x + y)$$

at (0,0,-1)

In what direction is this plane tilting up the most?

A3. Find the critical points of the function

$$z = g(x, y) = x^2 y^3 - 3y - 2x$$

and for each, determine if it is a local max, local min, or saddle point.

A4. Find the integral of the function

$$z = h(x, y) = \ln(x^2 + y^2 + 1)$$

over the region

$$R = \{(x,y) : x^2 + y^2 \le 4\}$$

A5. Find the integral of the function

$$k(x, y, z) = z$$

over the region lying inside of the sphere of radius 2 (centered at the origin (0,0,0)) and above the plane z=1 .

A6. Show that the vector field $\vec{F}=\langle y^2,2xy-1\rangle$ is conservative, find a potential function z=f(x,y) for \vec{F} , and use this potential function to (quickly!) find the integral of \vec{F} along the path

$$\vec{r}(t) = (t\sin(2\pi t) - e^t, \ln(t^2 + 1) - 5t^2)$$

 $, \quad 0 \leq t \leq 1$

A7. Use Green's Theorem to find the area of the region enclosed by the curve

$$\vec{r}(t) = (t^2 - 2\pi t, \sin t)$$
$$0 \le t \le 2\pi$$

A8. Find the flux of the vector field

$$\vec{G} = \langle x^2, xz, y \rangle$$
 through that part of the graph of

$$z = f(x, y) = xy$$

lying over the rectangle

$$1 \le x \le 3 \qquad , \qquad 0 \le y \le 3$$

B1. Find the orthogonal projection of the vector $\vec{v} = (3,1,2)$ onto the vector $\vec{w} = (-1,4,2)$.

B2. Find the equation of the plane passing through the points

$$(1,1,1), (2,1,3), \text{ and } (-1,2,1)$$

B4. Find the integral of the function $f(x,y) = xy^2$ over the region in the plane lying between the graphs of

$$a(x) = 2x$$
 and $b(x) = 3 - x^2$

- **B5.** Find the integral of the vector field F(x,y) = (xy, x+y) along the parametrized curve $\vec{r}(t) = (e^t, e^{2t})$ $0 \le t \le 1$.
- **B6.** Which of the following vector fields are **gradient** vector fields?

(a)
$$F(x,y) = (y\sin(xy), x\sin(xy))$$

(b)
$$G(x, y, z) = (x^2y, z^2 + x, 2yz)$$

(c)
$$H(x, y, z) = (y + y^2z, x + 2xyz, xy^2)$$

- **B7.** Use the Divergence Theorem to find the flux integral of the vector field
- F(x,y,z)=(y,xy,z) through the boundary of the region lying under the graph of

$$f(x,y) = 1 - x^2 - y^2$$
 and above the x-y plane (see figure).

B8. Use Stokes Theorem to find the line integral of the vector field F(x, y, z) = (xy, xz, yz)

around the triangle with vertices

(see figure).

B9. Imagine a box with side lengths x = 2, y = 3, and z = 4, and these lengths all change with time. How fast is the volume of the box changing, if

$$\frac{dx}{dt} = 3$$
, $\frac{dy}{dt} = -2$, and $\frac{dz}{dt} = -1$?

B10. Find the critical points of the function

$$f(x,y) = x^3y^2 - 6x^2 - y^2$$

and for each, determine if it is a rel max, rel min, or saddle point. Does the function have a global maximum?

B11. By switching the order of integration, find the integral

$$\int_0^1 \int_x^1 x e^{\frac{x^2}{y}} \ dy \ dx$$

B13. Find the flux integral of the vector field

$$F(x, y, z) = (1, y^2, xz)$$

over the sphere of radius 1 centered at (0,0,0).

C1. Find the equation of the plane tangent to the graph of the function

$$f(x,y) = \sqrt{2x^2 + y} = (2x^2 + y)^{\frac{1}{2}}$$
 at the point $(2,1,3)$.

C2. If the temperature in a room is given by the function $H(x,y,z) = \frac{xy+z}{x+y}$,

use the Chain Rule to compute the *rate of change* of the temperature, as you travel along the curve $\gamma(t) = (x(t), y(t), z(t)) = (t^2, 2t, t^3)$, at time t = 1.

C3. Find the point(s) on the ellipse $3x^2 + y^2 = 1$ where the function $f(x, y) = x^3y$ has its smallest (i.e., most negative) value.

C4. By reversing the order of integration, compute

$$\int_0^2 \int_x^2 x \sqrt{y^3 + 1} \ dy \ dx$$

C5. Set up but do not compute the triple integrals needed to find the volume of the region lying inside of the sphere $x^2 + y^2 + z^2 = 4$ and above the plane z = 1 in both rectangular and spherical coordinates (see figure).

- **C6.** Find a potential function for the conservative vector field (in the plane) $\vec{F}(x,y) = (\cos x \cos y, -\sin x \sin y)$ and use this to compute the line integral $\int_{\gamma} \vec{F} \circ d\vec{r}$ for the curve $\gamma(t) = (t \sin(\pi t), t^2 \cos(\pi t))$, $0 \le t \le 2$.
- C7. Set up but do not evaluate an iterated integral which will compute the flux integral of the vector field $\vec{F}(x,y,z) = (y,x,z)$ across the "helical spiral" Σ , parametrized by $T(u,v) = (u,v\cos u,v\sin u)$, for $0 \le u \le 2\pi$ and $-1 \le$ (see figure).

C8. Use Stokes' Theorem to compute the work done by the force field $\vec{G}(x,y,z)=(xy,z,xz)$ around the edges of the triangle lying on the graph of the function z=2x+y+3, with corners at (0,0,3), (1,0,5), and (1,1,6) (see figure).

C9. Use the Divergence Theorem to compute the flux of the vector field

$$\vec{F}(x, y, z) = (yz, x, xz)$$

through (<u>all</u> of) the sides of the "pyramid" obtained by slicing a corner off of the first octant $(x \ge 0 , y \ge 0 , z \ge 0)$ by the plane 2x + y + z = 2 (see figure).

D1. Find the equation of the plane tangent to the graph of the function

$$f(x,y) = \frac{xy}{x+2y}$$

at the point (1, 2, f(1, 2)). What vector is perpendicular to this plane?

D2. Find the directional derivative of the function $f(x,y) = xy^2 + x^2y$ in the direction of the velocity vector of the parametrized curve $\gamma(t) = (t\sin(t), 2-t)$, at time $t = \pi/2$

D3. Recall that the line y = L(x) = ax + b that 'best fits' a collection (x_i, y_i) of points is the one which minimizes the quantity $\sum_{i=1}^{n} (L(x_i) - y_i)^2$. Find the best fitting line for the points (0,0), (1,2), and (3,2).

D4. Show how to express a double integral of some function z = f(x, y) over the region R lying inside of the polygon shown below, as a sum of one or more iterated integrals.

D5. Find the work done by the vector field

$$\vec{F}(x,y) = (1,x^2)$$

along the top half of the ellipse given by $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$, from (2,0) to (-2,0) (see figure).

- **D6.** Show that the vector field $\vec{F}(x,y) = (y + \frac{1}{x}, x + \frac{1}{y})$ is a conservative vector field, and find a potential function for \vec{F} .
- **D7.** Find the flux of the vector field

$$\vec{F}(x, y, z) = (y, y, yz)$$

through the graph of the function z = f(x, y) = xy which lies above the rectangular region R in the plane lying between the x- and y-axes and the lines x = 3, y = 2.

D8. Use the Divergence Theorem to set up but not evaluate the integral required to find the flux of the vector field

$$\operatorname{ctln} \vec{F}(x, y, z) = (x, 2, xz)$$

through the boundary of the region lying between the graphs of the functions

$$f(x,y) = x^2 + y^2$$
 and $g(x,y) = 6 - \sqrt{x^2 + y^2}$ (see figure!).

[Hint: to find out where the graphs meet, set $r = \sqrt{x^2 + y^2}$ and solve for r...]

D9. Use the fact that

 $\vec{F}(x, y, z) = (1, xy, 1 - xz) = \text{curl}(xyz, x, y)$

to use Stokes' Theorem to compute the flux integral of \vec{F} over the top half of the sphere of radius 2 centered at the origin,

 $\{(x, y, z) : x^2 + y^2 + z^2 = 4, z \ge 0\}$ (see figure).

