Math 208H, Section 1

Practice problems for Exam 2 (Solutions)

[Disclaimer: these solutions were written somewhat hastily and without much verifi-
cation, so while the method described is almost certainly correct, the actual computations
do not carry the same claims of correctness....]

A1. Find the local extrema of the function f(x,y) = 22* — 2zy + y? , and determine, for
each, if it is a local max. local min, or saddle point.

Local extrema occur at critical points, so we compute: f, = 8x3—2y and fy = —22+2y
These are never undefined, so our only critical points will occur when both are 0.
fy = —2x + 2y = 0 means 2y = 2z, so y = z. Substituting this into f, = 823 — 2y =0
gives 823 — 2z = (2x)(42? — 1) = 0, so either x = 0, or 422 — 1 =0,s0 z =0 or x = 1/2
or x = —1/2. This yields the three critical points (0,0) , (1/2,1/2) , and (—1/2,—1/2).
To determine their character, we need the Hessian: f,, = 24z2, fey = —2, and
foy = 2,80 H = foufyy — (fuy)? = 482% — 4. At (0,0) H = —4 < 0, so (0,0) is a saddle
point. At (1/2,1/2), H = 48/4 —4 =12 -4 =8 > 0 and f,, = 24/4 =6 > 0, so
(1/2,1/2) is a local min. And at (—1/2,—1/2), H = 48/4 —4 =12 -4 =8 > 0 and
fox =24/4 =6 >0 as well, so (—1/2,—1/2) is also a local min.

A2. Find the point(s) on the ellipse g(x,y) = 22 + 3y? = 4

where the function flx,y)=x—3y+4 achieves it maximum value.

We use Lagrange multipliers, which requires us to solve

1= \2z), -3 = \(6y), and 2% + 3y*> =4

The first two equations tell us that A cannot be 0, and so we can solve them for x and
y and plug into the third equation, which yields (after clearing denomenators) 4 -4\? = 4,
so A = £1/2. Using these values in our first two equations yields (x,y) = (1, —1) or (=1, 1).
Plugging into f, we find that the maximum occurs at (1, —1).
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A3. Evaluate the iterated integral / / 22yt + 1)Y3 dy dx
0 T

by rewriting the integral to reverse the order of integration. (Note: the integral cannot be
evaluated in the order given....)

The region z < y < 2, for 0 < z < 2, is a triangle formed by the lines y = x, y = 2,
and x = 0. Writing this as a collection of horizontal lines gives the alternate decription
2 ry
0 <z <yfor 0 <y < 2. This yields the alternate iterated integral / / xQ(y4 + 1)1/3
o Jo

do dy — /zy—s( fpys gy = 3Lyl — L s )
. 3 112 0~ 16

A4. Find the integral of the function flz,y,2)=xc+y+=z
over the region lying between the graph of z = 22 + y? — 4 and the z-y plane.

The graph of z is a paraboloid, lowered by 4 units, and so the region betweeen lies
above the paraboloid and below the plane. The vertical lines which hit the region are
those with 22 + 2 < 4, which described the inside of the circle of radius 2 centered at the



origin. So this integral is perhaps best set up using cylindrical coordinates: The shadow
R is given by 0 <7 <2 and 0 < 0 < 27 in polar coordinates. So the integral is:

0 2 2 0
// x-i-y-i-zdsz:/ // rcosf +rsinf + z r dz dr df .
R Jz2+y2—4 0 0 Jr2—4

We omit the iterated integral calculation; you should carry it through!

A5. Find the integral of the function flz,y) = xy? over the region lying in the
first quadrant of the x-y plane and lying inside of the circle 2 +9y?°=9.

The region R is ‘best’ described in polar coordinates, as 0 < r < 3 and 0 < 6 < 2.
The Jacobian for this change of variables is r, and f(z,y) = 2y? = r® cos#sin? 6, yielding

27 3 2m -3
32 32 027
the integral / / rt cos@sin? 0 dr do = / “Z cosfsin? 6 do = = S =0-0=0
0 0 0 5 5 3 0
A6. Find the integral of the function f(z,y) = 6z + ¢ over the region in the
x-y plane between the x-axis and the lines y=zand y=6—2z .

We can set this up several ways. The region is a triangle resting on the z-axis.
Integrating dy first would require us to dut it into two pieces, so let’s try the other way.
The region is y < x < (6 —y)/2 for 0 < y < the point where the two lines meet; z = 6 — 2z
when © = 2, so 0 < y < 2. The integral then becomes

2 p(6-y)/2 2 (6—y)/2 2 1
/ / 6z +y* do dy = / 3x2—|—y2x’ dy:/ 3overd(6 —y)? + =y*(6 —
0 Jy 0 Yy 0 2
y) — 3y? —y* dy, which finishes as a slightly ugly but otherwise routine integral.

A7. Find the integral of the function f(z,y) = 2y? over the region in the plane
lying between the graphs of a(r) =2x and b(z) =3 —22%.

Our first task is to describe the region. To do this we need to know where the graphs
meet, so we solve 2x =3 — 2% s0 0 =22 +22z -3 = (z+3)(x — 1), so x = —3, 1. Between
these two points we have (z+3)(z—1) < 0, so 2z < 3—x2. So the region is 2z < y < 3—22,
for —3 < x < 1. So our integral is

1 p3—2? 1 zyP |32 1 [t
/ / zy? dy dz. This equals / — dr = —/ x(3 — 2?)% — 82t da .
-3 J2z —3 3 |2 3J-3

Noting that the first piece of the integrand is nicely arranged for a w-substitution (u =
3 — 22) can make the rest of the computation a bit more pleasant...

AB8. Evaluate the following double integrals:

12
(a): / / 2%y —y?z dz dy
0o J1

Having no particular reason to switch the order of integration, we find that the integral
l/113 Lo o= /1(18 142) (1 12)d /17 3.2
equals —x’y — —y°x = Z8y— = (g — = — L,_2 _
q 3y2y m:ly 03y2y Sy 2y Y 03y 2yy

7 14 7 1 7-3 2
Ey?’ 3 ‘0 =65 3= "6 —3 [although don’t count on that...|

(b): /01 /\/;x\/@ dy dx

0
y3



We can go at this straight ahead, as written, or, for fun, switch the order of integration,
since y = y/x and y = 1 meet at x = 1, which is the other limit of integration. Drawing a
figure, we find that the region has the alternate description 0 < z < y? for 0 < y < 1, so
the integral equals

1 py? 1272\/—r:y2 1
Yy L o2 _ 21112 1 1
dedy= [ ZYY gy = [ 29/ el -1
/0/0 Ty do dy /0 2 .m0 Y /O SRR T R T 11

A9. Find the integral of the function f(z,y) = z over the region R lying between the
graphs of the curves

y=z—2?andy =z — 1.

This is much like a previous problem; The two graphs meet when x — x2

x = —1,1 and between these numbers z — 1 < 2 — 22, so our regionisr—1<y<zxr—=x

for —1 < x < 1. So our integral is
y=z—z? 1 1
dx:/ (22 —23)—(2*—2) dx:/ r—2® dr =

1 z—x2 1
/ / x dy dx = / Ty
r— -1

=x—1,s0
2

y=z—1 -1 —1
)2 — 4/4‘ (1/2—1/4) — (1/2 —1/4) =0 . [Hm, that seems to happen a lot...]
A10. Use Lagrange multipliers to find the maximum value of the function flx,y) =

Ty subject to the constraint gx,y) =22 +4y>—-1=0.

Setting the gradients equal (with multiplier A), we wish to solve y = A\(2z) , = A(8y)
, and 22 +4y? = 1 . This means y = 2\z = 2\(8)\y) = 162y, so either y = 0 or 16)% =1,
so A = £1/4. But if y = 0 then z = 8\y = 0, which will not satisfy 22 + 4y* = 1, so that
won’t work.

So A = +1/4, giving us x = 42y, so (£2y)? + 4y? = 8y? = 1, so y = +1/2/4. This
gives us four points:

(z,y) = (—V2/2,—V2/4), (—V2/2,V/2/4)4, (V/2/2, —/2/4)4, or (\/2/2,\/2/4)4.

Plugging into f gives two values; the larger is 1/4 [and the smaller is —1/4].

A11. Find the area of the region S bounded by one loop of the curve described by
r = sin(360)
in polar coordinates. (Hint; to determine the limits of integration, when is r = 07)

The first return to r = 0 after 0 = 0 is When 30 = 7, so 6 = /3. This gives us the in-

w/3 psin(30) /3 sin(30 /3
NERCD: 1 . 9
tegral d:z: dy = rdr df = r do = 3 sin“(30) do =
0

0
Tr/g 0) do = ~ (0 0 /3 T
Z/0 (1—cos(6 ) ( - 6sm(ﬁ ))‘0 -

A12. A particle is moving through 3-space along the parametrized curve #(t) = (cost, sint, t3/?)
. Find:

(a) the velocity of the particle at time ¢,

Taking derivatives, i (t) = (—sint, cost, (3/2)t'/2.

(b) the acceleration of the particle at time ¢, and

Taking derivatives again, ' (t) = (— cost, —sint, (3/4)t~1/?).



(c) the length of the curve traced out by the particle between t =0 and t = 2 .
We need to compute the speed: ||7(t)|| = \/(—sint)2 + (cost)2 4 ((3/2)t1/2)2
= \/Sin2 t+cos2t+ (9/4)t = \/(9/4)t + 1 = (3/2)\/t + (4/9).

To find the length of the curve, we integrate:

Length = [7(3/2)\/1+ (4/9) dt = (3/2) [19" Vi du

= (3/2)(2/3)u/2[3 = (22/9)%/% — (4/9)*/2




