Math 208H, Section 1

Practice problems for Exam 2 (Solutions)

[**Disclaimer:** these solutions were written somewhat hastily and without much verification, so while the method described is almost certainly correct, the actual computations do not carry the same claims of correctness....]

A1. Find the local extrema of the function $f(x,y) = 2x^4 - 2xy + y^2$, and determine, for each, if it is a local max. local min, or saddle point.

Local extrema occur at critical points, so we compute: $f_x = 8x^3 - 2y$ and $f_y = -2x + 2y$. These are never undefined, so our only critical points will occur when both are 0. $f_y = -2x + 2y = 0$ means 2y = 2x, so y = x. Substituting this into $f_x = 8x^3 - 2y = 0$ gives $8x^3 - 2x = (2x)(4x^2 - 1) = 0$, so either x = 0, or $4x^2 - 1 = 0$, so x = 0 or x = 1/2 or x = -1/2. This yields the three critical points (0,0), (1/2,1/2), and (-1/2,-1/2).

To determine their character, we need the Hessian: $f_{xx} = 24x^2$, $f_{xy} = -2$, and $f_{yy} = 2$, so $H = f_{xx}f_{yy} - (f_{xy})^2 = 48x^2 - 4$. At (0,0) H = -4 < 0, so (0,0) is a saddle point. At (1/2, 1/2), H = 48/4 - 4 = 12 - 4 = 8 > 0 and $f_{xx} = 24/4 = 6 > 0$, so (1/2, 1/2) is a local min. And at (-1/2, -1/2), H = 48/4 - 4 = 12 - 4 = 8 > 0 and $f_{xx} = 24/4 = 6 > 0$ as well, so (-1/2, -1/2) is also a local min.

A2. Find the point(s) on the ellipse $g(x,y) = x^2 + 3y^2 = 4$ where the function f(x,y) = x - 3y + 4 achieves it maximum value.

We use Lagrange multipliers, which requires us to solve

$$1 = \lambda(2x)$$
, $-3 = \lambda(6y)$, and $x^2 + 3y^2 = 4$

The first two equations tell us that λ cannot be 0, and so we can solve them for x and y and plug into the third equation, which yields (after clearing denomenators) $4 \cdot 4\lambda^2 = 4$, so $\lambda = \pm 1/2$. Using these values in our first two equations yields (x, y) = (1, -1) or (-1, 1). Plugging into f, we find that the maximum occurs at (1, -1).

A3. Evaluate the iterated integral $\int_0^2 \int_x^2 x^2 (y^4 + 1)^{1/3} dy dx$

by rewriting the integral to reverse the order of integration. (Note: the integral *cannot* be evaluated in the order given....)

The region $x \le y \le 2$, for $0 \le x \le 2$, is a triangle formed by the lines y = x, y = 2, and x = 0. Writing this as a collection of horizontal lines gives the alternate decription $0 \le x \le y$ for $0 \le y \le 2$. This yields the alternate iterated integral $\int_0^2 \int_0^y x^2 (y^4 + 1)^{1/3} dx \, dy = \int_0^2 \frac{y^3}{3} (y^4 + 1)^{1/3} \, dy = \frac{3}{4} \frac{1}{12} (y^4 + 1)^{4/3} \Big|_0^2 = \frac{1}{16} [(2^4 + 1)^{4/3} - 1]$.

A4. Find the integral of the function f(x, y, z) = x + y + z over the region lying between the graph of $z = x^2 + y^2 - 4$ and the x-y plane.

The graph of z is a paraboloid, lowered by 4 units, and so the region between lies above the paraboloid and below the plane. The vertical lines which hit the region are those with $x^2 + y^2 \le 4$, which described the inside of the circle of radius 2 centered at the

origin. So this integral is perhaps best set up using cylindrical coordinates: The shadow R is given by $0 \le r \le 2$ and $0 \le \theta \le 2\pi$ in polar coordinates. So the integral is:

$$\int_{R} \int_{x^{2}+y^{2}-4}^{0} x + y + z \, dz \, dA = \int_{0}^{2\pi} \int_{0}^{2} \int_{r^{2}-4}^{0} r \cos \theta + r \sin \theta + z \, r \, dz \, dr \, d\theta .$$

We omit the iterated integral calculation; you should carry it through!

A5. Find the integral of the function $f(x,y) = xy^2$ over the region lying in the first quadrant of the x-y plane and lying inside of the circle $x^2 + y^2 = 9$.

The region R is 'best' described in polar coordinates, as $0 \le r \le 3$ and $0 \le \theta \le 2\pi$. The Jacobian for this change of variables is r, and $f(x,y) = xy^2 = r^3 \cos \theta \sin^2 \theta$, yielding the integral $\int_0^{2\pi} \int_0^3 r^4 \cos \theta \sin^2 \theta \, dr \, d\theta = \int_0^{2\pi} \frac{32}{5} \cos \theta \sin^2 \theta \, d\theta = \frac{32}{5} \frac{\sin^3 \theta}{3} \Big|_0^{2\pi} = 0 - 0 = 0$

A6. Find the integral of the function $f(x,y) = 6x + y^2$ over the region in the x-y plane between the x-axis and the lines y = x and y = 6 - 2x.

We can set this up several ways. The region is a triangle resting on the x-axis. Integrating dy first would require us to dut it into two pieces, so let's try the other way. The region is $y \le x \le (6-y)/2$ for $0 \le y \le$ the point where the two lines meet; x = 6-2x when x = 2, so $0 \le y \le 2$. The integral then becomes

when x=2, so $0 \le y \le 2$. The integral then becomes $\int_0^2 \int_y^{(6-y)/2} 6x + y^2 \, dx \, dy = \int_0^2 3x^2 + y^2 x \Big|_y^{(6-y)/2} \, dy = \int_0^2 3over 4(6-y)^2 + \frac{1}{2}y^2 (6-y)^2 + \frac{1}{2}y^2 (6-y)$

A7. Find the integral of the function $f(x,y) = xy^2$ over the region in the plane lying between the graphs of a(x) = 2x and $b(x) = 3 - x^2$.

Our first task is to describe the region. To do this we need to know where the graphs meet, so we solve $2x = 3 - x^2$, so $0 = x^2 + 2x - 3 = (x+3)(x-1)$, so x = -3, 1. Between these two points we have (x+3)(x-1) < 0, so $2x < 3-x^2$. So the region is $2x \le y \le 3-x^2$, for $-3 \le x \le 1$. So our integral is

for $-3 \le x \le 1$. So our integral is $\int_{-3}^{1} \int_{2x}^{3-x^2} xy^2 \ dy \ dx.$ This equals $\int_{-3}^{1} \frac{xy^3}{3} \Big|_{2x}^{3-x^2} \ dx = \frac{1}{3} \int_{-3}^{1} x(3-x^2)^3 - 8x^4 \ dx.$ Noting that the first piece of the integrand is nicely arranged for a u-substitution (u =

 $(3-x^2)$ can make the rest of the computation a bit more pleasant...

A8. Evaluate the following double integrals:

(a):
$$\int_0^1 \int_1^2 x^2 y - y^2 x \, dx \, dy$$

Having no particular reason to switch the order of integration, we find that the integral equals $\int_0^1 \frac{1}{3} x^3 y - \frac{1}{2} y^2 x^2 \Big|_{x=1}^{x=2} dy = \int_0^1 (\frac{1}{3} 8y - \frac{1}{2} 4y^2) - (\frac{1}{3} y - \frac{1}{2} y^2) \ dy = \int_0^1 \frac{7}{3} y - \frac{3}{2} y^2 \ dy = \frac{7}{6} y^3 - \frac{1}{2} y^3 \Big|_0^1 = \frac{7}{6} - \frac{1}{2} = \frac{7-3}{6} = \frac{2}{3} \text{ [although don't count on that...]}$

(b):
$$\int_0^1 \int_{\sqrt{x}}^1 x \sqrt{y} \, dy \, dx$$

We can go at this straight ahead, as written, or, for fun, switch the order of integration, since $y = \sqrt{x}$ and y = 1 meet at x = 1, which is the other limit of integration. Drawing a figure, we find that the region has the alternate description $0 \le x \le y^2$ for $0 \le y \le 1$, so the integral equals

$$\int_0^1 \int_0^{y^2} x \sqrt{y} \, dx \, dy = \int_0^1 \frac{x^2 \sqrt{y}}{2} \Big|_{x=0}^{x=y^2} \, dy = \int_0^1 \frac{1}{2} x^{9/2} = \frac{2}{11} \frac{1}{2} x^{11/2} \Big|_0^1 = \frac{1}{11} - 0 = \frac{1}{11} \, .$$

A9. Find the integral of the function f(x,y) = x over the region R lying between the graphs of the curves

$$y = x - x^2$$
 and $y = x - 1$.

This is much like a previous problem; The two graphs meet when $x-x^2=x-1$, so x=-1,1 and between these numbers $x-1 \le x-x^2$, so our region is $x-1 \le y \le x-x^2$ for $-1 \le x \le 1$. So our integral is

for
$$-1 \le x \le 1$$
. So our integral is
$$\int_{-1}^{1} \int_{x-1}^{x-x^2} x \, dy \, dx = \int_{-1}^{1} xy \Big|_{y=x-1}^{y=x-x^2} dx = \int_{-1}^{1} (x^2 - x^3) - (x^2 - x) \, dx = \int_{-1}^{1} x - x^3 \, dx = x^2/2 - x^4/4 \Big|_{-1}^{1} = (1/2 - 1/4) - (1/2 - 1/4) = 0$$
. [Hm, that seems to happen a lot...]

A10. Use Lagrange multipliers to find the maximum value of the function f(x,y) = xy subject to the constraint $g(x,y) = x^2 + 4y^2 - 1 = 0$.

Setting the gradients equal (with multiplier λ), we wish to solve $y=\lambda(2x)$, $x=\lambda(8y)$, and $x^2+4y^2=1$. This means $y=2\lambda x=2\lambda(8\lambda y)=16\lambda^2 y$, so either y=0 or $16\lambda^2=1$, so $\lambda=\pm 1/4$. But if y=0 then $x=8\lambda y=0$, which will not satisfy $x^2+4y^2=1$, so that won't work.

So $\lambda = \pm 1/4$, giving us $x = \pm 2y$, so $(\pm 2y)^2 + 4y^2 = 8y^2 = 1$, so $y = \pm \sqrt{2}/4$. This gives us <u>four</u> points:

$$(x,y) = (-\sqrt{2}/2, -\sqrt{2}/4), (-\sqrt{2}/2, \sqrt{2}/4)4, (\sqrt{2}/2, -\sqrt{2}/4)4, \text{ or } (\sqrt{2}/2, \sqrt{2}/4)4.$$

Plugging into f gives two values; the larger is 1/4 [and the smaller is -1/4].

A11. Find the area of the region S bounded by one loop of the curve described by $r = \sin(3\theta)$

in polar coordinates. (Hint; to determine the limits of integration, when is r = 0?)

The first return to r = 0 after $\theta = 0$ is when $3\theta = \pi$, so $\theta = \pi/3$. This gives us the integral $\int \int_S dx \, dy = \int_0^{\pi/3} \int_0^{\sin(3\theta)} r \, dr \, d\theta = \frac{1}{2} \int_0^{\pi/3} r^2 \Big|_0^{\sin(3\theta)} d\theta = \frac{1}{2} \int_0^{\pi/3} \sin^2(3\theta) \, d\theta = \frac{1}{4} \int_0^{\pi/3} (1 - \cos(6\theta)) \, d\theta = \frac{1}{4} (\theta - \frac{1}{6} \sin(6\theta)) \Big|_0^{\pi/3} = \frac{\pi}{12}$

- **A12.** A particle is moving through 3-space along the parametrized curve $\vec{r}(t) = (\cos t, \sin t, t^{3/2})$. Find:
 - (a) the velocity of the particle at time t,

Taking derivatives, $\vec{r}'(t) = (-\sin t, \cos t, (3/2)t^{1/2}.$

(b) the acceleration of the particle at time t, and

Taking derivatives again, $\vec{r}''(t) = (-\cos t, -\sin t, (3/4)t^{-1/2}).$

(c) the length of the curve traced out by the particle between t=0 and t=2 .

We need to compute the speed:
$$||\vec{r}'(t)|| = \sqrt{(-\sin t)^2 + (\cos t)^2 + ((3/2)t^{1/2})^2}$$

= $\sqrt{\sin^2 t + \cos^2 t + (9/4)t} = \sqrt{(9/4)t + 1} = (3/2)\sqrt{t + (4/9)}$.

To find the length of the curve, we integrate:

Length =
$$\int_0^2 (3/2) \sqrt{t + (4/9)} dt = (3/2) \int_{4/9}^{22/9} \sqrt{u} du$$

= $(3/2)(2/3)u^{3/2} \Big|_{4/9}^{22/9} = (22/9)^{3/2} - (4/9)^{3/2}$