Math 208H, Section 1

Practice problems for Exam 1 (Solutions)

1. Find the sine of the angle between the vectors (1,-1,2) and (1,2,1).

We can use the dot product (dividing by lengths) to compute the cosine of the angle, and then from that the sine. Or we can use $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin(\theta)$ to compute the sine, by finding the cross product and computing lengths.

$$\sin(\theta) = \sqrt{(-5)^2 + 1^2 + 3^2} / (\sqrt{1^2 + (-1)^2 + 2^2} \cdot \sqrt{1^2 + 2^2 + 1^2}) = \sqrt{35} / (\sqrt{6} \cdot \sqrt{6}) = \sqrt{35} / 6$$
This is consistent with $\cos(\theta) = (1 \cdot 1 + (-1) \cdot 2 + 2 \cdot 1) / (\sqrt{6} \cdot \sqrt{6}) = 1/6$.

2. Find a vector of length 3 that is perpendicular to both

$$\vec{v} = \langle 1, 3, 5 \rangle$$
 and $\vec{w} = \langle 2, 1, -1 \rangle$.

A vector perpendicular to both is given by the cross product, so we compute

$$\vec{v} \times \vec{w} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 3 & 5 \\ 2 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 3 & 5 \\ 1 & -1 \end{vmatrix} \vec{i} - \begin{vmatrix} 1 & 5 \\ 2 & -1 \end{vmatrix} \vec{j} + \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} \vec{k}$$
$$= \langle -3 - 5, -(-1 - 10), 1 - 6 \rangle = \langle -8, 11, -5 \rangle$$

[We can test that this is perpendicular to the two vectors by computing dot products...]

This vector has length $\sqrt{64 + 121 + 25} = \sqrt{210}$; since we want a vector of length 3, we take the appropriate scalar multiple:

$$\vec{N} = \frac{3}{\sqrt{210}} \langle -8, 11, -5 \rangle$$
 has length 3 and is \perp tp \vec{v} and \vec{w} . [Its negative also works...]

3. Show that if the vectors $\vec{\mathbf{v}} = (a_1, a_2, a_3)$ and $\vec{\mathbf{w}} = (b_1, b_2, b_3)$ have the same length, then the vectors $\vec{\mathbf{v}} + \vec{\mathbf{w}}$ and $\vec{\mathbf{v}} - \vec{\mathbf{w}}$ are perpendicular to one another.

We wish to know that $(\vec{\mathbf{v}} + \vec{\mathbf{w}}) \circ (\vec{\mathbf{v}} - \vec{\mathbf{w}}) = 0$. But expanding this out, we find that it is equal to $\vec{\mathbf{v}} \circ \vec{\mathbf{v}} - \vec{\mathbf{w}} \circ \vec{\mathbf{w}}$. This will be equal to 0 precisely when $|\vec{v}|^2 = \vec{\mathbf{v}} \circ \vec{\mathbf{v}} = \vec{\mathbf{w}} \circ \vec{\mathbf{w}} = |\vec{w}|^2$. This in turn, means that $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ have the same length.

4. Find the equation of the plane in 3-space which passes through the three points (1, 2, 1), (6, 1, 2), and (9, -2, 1). Does the point (3, 2, 1) lie on this plane?

To find the equation, we need a point and a normal vector; the normal can be found by a cross product. $\vec{N} = \vec{PQ} \times \vec{PR} = (5, -1, 1) \times (8, -4, 0) = (4, 8, -12)$. Then the equation is $(4, 8, -12) \circ (x - 1, y - 2, z - 1) = 0$, or 4x + 8y - 12z = 8 (or x + 2y - 3z = 2 (!)). [Check: the 3 points satisfy the equation!] Checking, $4 \cdot 3 + 8 \cdot 2 - 12 \cdot 1 = 16 \neq 8$, so the point does not lie on the plane.

5. Find the partial derivatives of the following functions:

(a)
$$f(x, y, z) = x \tan(2x + yz)$$

We have $f_x=\tan(2x+yz)+x\sec^2(2x+yz)\cdot 2$, $f_y=x\sec^2(2x+yz)\cdot z$, and $f_z=x\sec^2(2x+yz)\cdot y$.

(b)
$$g(x,y) = \frac{x^2y - ty^4}{\sin(3y) + 4}$$
 We have $g_x = \frac{(2xy)(\sin(3y) + 4) - (x^2y - ty^4)(0)}{(\sin(3y) + 4)^2}$,

and $g_y = \frac{(x^2-4ty^3)(\sin(3y)+4)-(x^2y-ty^4)(3\cos(3y))}{(\sin(3y)+4)^2}$. Since the question didn't ask us to do anything with these, why simplify them?

6. Find the equation of the tangent plane to the graph of the equation $f(x, y, z) = xy^2 + x^2z - xyz = 5$, at the point (-1, 1, 3).

 $f_x=y^2+2xz-yz$, $f_y=2xy+x^2-xz$, and $f_z=x^2-xy$. The normal vector to the plane will be $(f_x(-1,1,3),f_y(-1,1,3),f_z(-1,1,3))=(1-6-3,-2+1+3,1+1)=(-8,2,2)$. Together with the point of tangency, this gives us the equation

$$-8(x-(-1))+2(y-1)+2(z-3)=0$$
, or $-8x+2y+2z=16$, or $4x-y-z=-8$.

7. Calculate the first and second partial derivatives of the function $h(x,y) = \frac{\sin(x+y)}{y}$

It may help a bit to write this function as $h(x,y) = y^{-1}\sin(x+y)$. Then we have $h_x = y^{-1}\cos(x+y) \cdot 1 = y^{-1}\cos(x+y)$, $h_y = -y^{-2}\sin(x+y) + y^{-1}\cos(x+y) \cdot 1 = -y^{-2}\sin(x+y) + y^{-1}\cos(x+y)$. Then $h_{xx} = (h_x)_x = y^{-1}(-\sin(x+y)\cdot 1) = -y^{-1}\sin(x+y)$ $h_{yx} = h_{xy} = (h_x)_y = -y^{-2}\cos(x+y) + y^{-1}(-\sin(x+y)\cdot 1) = -y^{-2}\cos(x+y) - y^{-1}\sin(x+y)$ $h_{yy} = (h_y)_y$ $h_{yy} = (h_y)_y$

 $= [2y^{-3}\sin(x+y) - y^{-2}(\cos(x+y)\cdot 1)] + [-y^{-2}\cos(x+y) + y^{-1}(-\sin(x+y)\cdot 1)]$ Again, we don't want to do anything with it, so why bother simplifying it...

8. In which direction is the function $f(x,y) = x^4y - 3x^2y^2$ increasing the fastest, at the point (1,2)? In which directions is the function *neither* increasing *nor* decreasing?

f increases fastest in the direction of the gradient, so we compute:

 $\nabla f = (4x^3y - 6xy^2, x^4 - 6x^2y)$, which at (1,2) gives $\vec{v} = (8 - 24, 1 - 12) = (-16, -11)$. This is the drection of fastest increase (you can divide by its length if you want a unit vector...).

For no increase/decrease, what we want is $D_{\vec{w}}f = \nabla f \circ \vec{w} = 0$, so we want $(-16,11) \circ (\alpha,\beta) = -16\alpha - 11\beta = 0$; we can do this, for example, with $\vec{w} = (\alpha,\beta) = (11,-16)$. [There are many other answers, all scalar multiples of this one.]

9. If $f(x,y)=x^2y^5-x+3y-4$, $x=x(u,v)=\frac{u}{u+v}$ and y=y(u,v)=uv-u, use the Chain Rule to find $\frac{\partial f}{\partial u}$ when u=1 and v=0.

First, when (u,v)=(1,0), then x=1/(1+0)=1 and $y=1\cdot 0-1=-1$. From the chain rule, we know that $f_u=f_xx_u+f_yy_u$, evaluated at (x,y)=(1,-1) and (u,v)=(1,0). We compute:

$$f_x = 2xy^5 - 1 = -2 - 1 = -3 , f_y = 5x^2y^4 + 3 = 5 + 3 = 8 , x_u = \frac{(1)(u+v) - (u)(1)}{(u+v)^2} = \frac{v}{(u+v)^2} = 0 , \text{ and } y_u = v - 1 = 0 - 1 = -1 ; \text{ so at } (u,v) = (1,0) \text{ we have } f_u(1,0) = (-3)(0) + (8)(-1) = -8 .$$

10. If $f(x,y) = \frac{x^2y}{x+y}$, and $\gamma(t) = (x(t), y(t))$ is a parametrized curve in the domain of f with $\gamma(0) = (2, -1)$ and $\gamma'(0) = (3, 5)$, then what is $\frac{d}{dt}f(\gamma(t))\Big|_{t=0}$?

By the chain rule, $\frac{df}{dt} = f_x x_t + f_y y_t$. We compute: $f_x = \frac{(2xy)(x+y) - (x^2y)(1)}{(x+y)^2}$ and $f_y = \frac{(x^2)(x+y) - (x^2y)(1)}{(x+y)^2}$.

At (2,-1), these are $f_x = \frac{(-4)(1) - (-4)(1)}{(1)^2} = 0$ and $f_y = \frac{(4)(1) - (-4)(1)}{(1)^2} = 8$, so $\frac{df}{dt} = f_x x_t + f_y y_t = (0)(3) + (8)(5) = 40$.

11. Find the **second** partial derivatives of the function $h(x,y) = x\sin(xy^2)$.

We compute: $h_x = (1)(\sin(xy^2)) + (x)(\cos(xy^2))(y^2) = \sin(xy^2) + xy^2 \cos(xy^2)$ $h_y = x(\cos(xy^2))(2xy) = 2x^2y\cos(xy^2)$. Then for the second partials: $h_{xx} - (h_x)_x = (\cos(xy^2))(y^2) + [(y^2)(\cos(xy^2)) + (xy^2)(-\sin(xy^2))(y^2)]$ $= 2y^2\cos(xy^2) - xy^4\sin(xy^2)$ $h_{xy} = h_{yx} = (h_y)_x = (4xy)(\cos(xy^2)) + (2x^2y)(-\sin(xy^2))(y^2)$ $= 4xy\cos(xy^2) - 2x^2y^3\sin(xy^2)$ $h_{yy} = (h_y)_y = (2x^2)(\cos(xy^2)) + (2x^2y)(-\sin(xy^2))(2xy)$ $= 2x^2\cos(xy^2) - 4x^3y^2\sin(xy^2)$

12. For which value(s) of c are the vectors $\vec{v} = (1, 2, c)$ and $\vec{w} = (-5, 2c, 4)$ orthogonal?

We want $\vec{v} \bullet \vec{w} = 0$, so $0 = (1, 2, c) \bullet (-5, 2c, 4) = -5 + 4c + 4c = -5 + 8c$, so 8c = 5 and so c = 5/8. This gives the vectors

$$\vec{v} = (1, 2, \frac{5}{8})$$
 and $\vec{w} = (-5, \frac{5}{4}, 4)$.

[As a check, $\vec{v} \bullet \vec{w} = (1, 2, \frac{5}{8}) \bullet (-5, \frac{5}{4}, 4) = -5 + \frac{5}{2} + \frac{5}{2} = 0$, as desired.]

13. Find the equation of the plane passing through the points

$$(2,3,5)$$
, $(1,-1,0)$, and $(1,1,2)$.

Labeling the points P, Q, and R for convenience, we have $\vec{v} = \vec{PQ} = (-1, -4, -5)$ and $\vec{w} = \vec{PR} = (-1, -2, -3)$. These are directions in the plane, and so their cross product will be normal to the plane. So we compute

$$\vec{n} = \vec{v} \times \vec{w} = \left(\begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}, - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}, \begin{vmatrix} v_1 & v_2 \\ w_1 & w_1 \end{vmatrix} \right) = \left(\begin{vmatrix} -4 & -5 \\ -2 & -3 \end{vmatrix}, - \begin{vmatrix} -1 & -5 \\ -1 & -3 \end{vmatrix}, \begin{vmatrix} -1 & -4 \\ -1 & -2 \end{vmatrix} \right)$$

$$= (12 - 10, -(3 - 5), 2 - 4) = (2, 2, -2).$$

[As a check, we can compute $\vec{v}\bullet\vec{n}=-2-8+10=0$ and $\vec{w}\bullet\vec{n}=-2-4+6=0$.]

With a normal $\vec{n} = (2, 2, -2)$ to the plane and a point P = (2, 3, 5) on the plane, we can give the equation for the plane as $\vec{n} \bullet [(x, y, z) - (2, 3, 5)] = 0$, i.e.,

$$2(x-2) + 2(y-3) - 2(z-5) = 0.$$

[There are, of course, many other equivalent answers, obtained by choosing, for example, another point to use as the tails of our vectors....]

14. What is the rate of change of the function $f(x,y) = \frac{xy}{x+2y}$, at the point (4,2), and in the direction of the vector $\vec{v} = (1,1)$?

The rate of change is the directional derivative, computed as $\nabla f(4,2) \bullet \vec{v}$. So we compute:

$$f(x,y) = xy(x+2y)^{-1}, \text{ so } f_x = (y)(x+2y)^{-1} + (xy)[(-1)(x+2y)^{-2}(1)], \text{ and } f_y = (x)(x+2y)^{-1} + (xy)[(-1)(x+2y)^{-2}(2)]. \text{ So }$$

$$\nabla f(4,2) = ((2)(8)^{-1} + (8)(-1)(8)^{-2}, (4)(8)^{-1} + (8)(-1)(8)^{-2}(2)) = (\frac{1}{4} - \frac{1}{8}, \frac{1}{2} - \frac{1}{4}) = (\frac{1}{8}, \frac{1}{4})$$

So the rate of change is
$$\nabla f(4,2) \bullet \vec{v} = (\frac{1}{8}, \frac{1}{4}) \bullet (1,1) = \frac{1}{8} + \frac{1}{4} = \frac{3}{8}$$
.

[Under some interpretations, we should divide this number by $||(1,1)|| = \sqrt{2}$, in order to be using the <u>unit</u> vector pointing in the direction of \vec{v} .]

15. Find the equation of the plane tangent to the graph of the function

$$g(x,y) = x^3y - 4x^2y^2 + 2xy^4$$
 at the point $(2,1,g(2,1))$.

We can describe this plane using a point on the plane and its x- and y-slopes, all of which the function can provide.

The point of tangency (2, 1, g(2, 1)) = (2, 1, 8 - 16 + 4) = (2, 1, -4) is a point on the plane.

For the slopes, we compute:

$$g_x = 3x^2y - 8xy^2 + 2y^4$$
, so $f_x(2,1) = 12 - 16 + 2 = -2 = m = x$ -slope.
 $g_y = x^3 - 8x^2y + 8xy^3$, so $f_y(2,1) = 8 - 32 + 16 = -8 = n = y$ -slope.

So the equation for the tangent plane is given by

$$z = g(2,1) + g_x(2,1)(x-2) + g_y(2,1)(y-1) = -4 - 2(x-2) - 8(y-1)$$

Multiplying out, this can be converted to z=-4-2x+4-8y+8=-2x-8y+8 .

16. If $x=u^2v$ and $y=uv^2$, then show how to express the partial derivatives of g(u,v)=f(x(u,v),y(u,v)) at the point (u,v)=(2,-1), in terms of the (at the moment unknown) partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Writing z=g(u,v)=f(x(u,v),y(u,v)), by the Chain rule, we know that $z_u=z_xx_u+z_yy_u$ and $z_v=z_xx_v+z_yy_v$. We can compute

$$x(2,-1)=2^2(-1)=-4$$
 and $y(2,-1)=2(-1)^2=2$, so $(x,y)=(-4,2)$, while $x_u=2uv$, $x_v=u^2$, $y_u=v^2$, and $y_v=2uv$, and so at $(u,v)=(2,-1)$, we have

$$x_u = -4$$
, $x_v = 4$, $y_u = 1$, and $y_v = -4$. So at $(u, v) = (2, -1)$, we have $g_u(2, -1) = [f_x(-4, 2)][-4] + [f_y(-4, 2)][1] = -4f_x(-4, 2) + f_y(-4, 2)$, and $g_v(2, -1) = [f_x(-4, 2)][4] + [f_y(-4, 2)][-4] = 4f_x(-4, 2) - 4f_y(-4, 2)$.

17. Find the **second** partial derivatives of the function $h(x,y) = xe^{xy}$.

We compute:

$$h_x = (1)(e^{xy}) + (x)(e^{xy}y) = e^{xy} + xye^{xy} \text{ and } h_y = (0)(e^{xy}) + (x)(e^{xy}x) = x^2e^{xy} . \text{ So}$$

$$h_{xx} = (h_x)_x = (e^{xy})(y) + [(y)e^{xy} + (xy)(e^{xy}y)] = 2ye^{xy} + xy^2e^{xy} ,$$

$$h_{xy} = (h_x)_y = (e^{xy})(x) + [(x)(e^{xy}) + (xy)(e^{xy}x)] = 2xe^{xy} + x^2ye^{xy} ,$$

$$h_{yx} = (h_y)_x = (2x)(e^{xy}) + (x^2)(e^{xy}y) = 2xe^{xy} + x^2ye^{xy} = h_{xy} , \text{ and }$$

$$h_{yy} = (x^2)(e^{xy}x) = x^3e^{xy} .$$

18. Find the local extrema of the function $f(x,y) = 2x^4 - 2xy + y^2$, and determine, for each, if it is a local max. local min, or saddle point.

Local extrema occur at critical points, so we compute: $f_x = 8x^3 - 2y$ and $f_y = -2x + 2y$. These are never undefined, so our only critical points will occur when both are 0. $f_y = -2x + 2y = 0$ means 2y = 2x, so y = x. Substituting this into $f_x = 8x^3 - 2y = 0$ gives $8x^3 - 2x = (2x)(4x^2 - 1) = 0$, so either x = 0, or $4x^2 - 1 = 0$, so x = 0 or x = 1/2 or x = -1/2. This yields the three critical points (0,0), (1/2,1/2), and (-1/2,-1/2).

To determine their character, we need the Hessian: $f_{xx} = 24x^2$, $f_{xy} = -2$, and $f_{yy} = 2$, so $H = f_{xx}f_{yy} - (f_{xy})^2 = 48x^2 - 4$. At (0,0) H = -4 < 0, so (0,0) is a saddle point. At (1/2, 1/2), H = 48/4 - 4 = 12 - 4 = 8 > 0 and $f_{xx} = 24/4 = 6 > 0$, so (1/2, 1/2) is a local min. And at (-1/2, -1/2), H = 48/4 - 4 = 12 - 4 = 8 > 0 and $f_{xx} = 24/4 = 6 > 0$ as well, so (-1/2, -1/2) is also a local min.