
Math 208H, Section 1

Practice problems for Exam 1 (Solutions)

1. Find the sine of the angle between the vectors (1,−1,2) and (1,2,1) .

We can use the dot product (dividing by lengths) to compute the cosine of the angle,
and then from that the sine. Or we can use |~u× ~v| = |~u||~v| sin(θ) to compute the sine, by
finding the cross product and computing lengths.

sin(θ) =
√

(−5)2 + 12 + 32/(
√
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√
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√
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√
6) =

√
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This is consistent with cos(θ) = (1 · 1 + (−1) · 2 + 2 · 1)/(
√
6 ·

√
6) = 1/6 .

2. Find a vector of length 3 that is perpendicular to both

~v = 〈1, 3, 5〉 and ~w = 〈2, 1,−1〉 .

A vector perpendicular to both is given by the cross product, so we compute
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= 〈−3− 5,−(−1− 10), 1− 6〉 = 〈−8, 11,−5〉
[We can test that this is perpendicular to the two vectors by computing dot products...]

This vector has length
√
64 + 121 + 25 =

√
210; since we want a vector of length 3,

we take the appropriate scalar multiple:

~N =
3√
210

〈−8, 11,−5〉 has length 3 and is ⊥ tp ~v and ~w. [Its negative also works...]

3. Show that if the vectors ~v=(a1, a2, a3) and ~w=(b1, b2, b3) have the same length, then
the vectors ~v + ~w and ~v − ~w are perpendicular to one another.

We wish to know that (~v+ ~w) ◦ (~v− ~w) = 0 . But expanding this out, we find that it
is equal to ~v◦~v− ~w◦ ~w . This will be equal to 0 precisely when |~v|2 = ~v◦~v = ~w◦ ~w = |~w|2
. This in turn, means that ~v and ~w have the same length.

4. Find the equation of the plane in 3-space which passes through the three points (1, 2, 1)
, (6, 1, 2), and (9,−2, 1) . Does the point (3, 2, 1) lie on this plane?

To find the equation, we need a point and a normal vector; the normal can be found
by a cross product. ~N = ~PQ × ~PR = (5,−1, 1) × (8,−4, 0) = (4, 8,−12) . Then the
equation is (4, 8,−12) ◦ (x− 1, y − 2, z − 1) = 0, or 4x+ 8y − 12z = 8 (or x+ 2y − 3z = 2
(!)). [Check: the 3 points satisfy the equation!] Checking, 4 · 3 + 8 · 2− 12 · 1 = 16 6= 8, so
the point does not lie on the plane.

5. Find the partial derivatives of the following functions:

(a) f(x, y, z) = x tan(2x+ yz)

We have fx = tan(2x + yz) + x sec2(2x + yz) · 2 , fy = x sec2(2x + yz) · z , and
fz = x sec2(2x+ yz) · y .

(b) g(x, y) =
x2y − ty4

sin(3y) + 4
We have gx =

(2xy)(sin(3y) + 4)− (x2y − ty4)(0)

(sin(3y) + 4)2
,



and gy =
(x2 − 4ty3)(sin(3y) + 4)− (x2y − ty4)(3 cos(3y))

(sin(3y) + 4)2
. Since the question didn’t

ask us to do anything with these, why simplify them?

6. Find the equation of the tangent plane to the graph of the equation f(x, y, z) =
xy2 + x2z − xyz = 5 , at the point (−1, 1, 3) .

fx = y2+2xz−yz , fy = 2xy+x2−xz , and fz = x2−xy . The normal vector to the
plane will be (fx(−1, 1, 3), fy(−1, 1, 3), fz(−1, 1, 3)) = (1−6−3,−2+1+3, 1+1) = (−8, 2, 2)
. Together with the point of tangency, this gives us the equation

−8(x− (−1)) + 2(y− 1) + 2(z− 3) = 0 , or −8x+2y+2z = 16 , or 4x− y− z = −8 .

7. Calculate the first and second partial derivatives of the function h(x, y) =
sin(x+ y)

y

It may help a bit to write this function as h(x, y) = y−1 sin(x+ y) . Then we have

hx = y−1 cos(x+ y) · 1 = y−1 cos(x+ y) ,
hy = −y−2 sin(x+ y) + y−1 cos(x+ y) · 1 = −y−2 sin(x+ y) + y−1 cos(x+ y) . Then

hxx = (hx)x = y−1(− sin(x+ y) · 1) = −y−1 sin(x+ y)

hyx = hxy = (hx)y = −y−2 cos(x+ y) + y−1(− sin(x+ y) · 1)
= −y−2 cos(x+ y)− y−1 sin(x+ y)

hyy = (hy)y
= [2y−3 sin(x+ y)− y−2(cos(x+ y) · 1)] + [−y−2 cos(x+ y) + y−1(− sin(x+ y) · 1)]
Again, we don’t want to do anything with it, so why bother simplifying it...

8. In which direction is the function f(x, y) = x4y − 3x2y2 increasing the fastest, at the
point (1,2) ? In which directions is the function neither increasing nor decreasing?

f increases fastest in the direction of the gradient, so we compute:
∇f = (4x3y− 6xy2, x4− 6x2y), which at (1,2) gives ~v = (8− 24, 1− 12) = (−16,−11)

. This is the drection of fastest increase (you can divide by its length if you want a unit
vector...).

For no increase/decrease, what we want is D~wf = ∇f ◦ ~w = 0, so we want
(−16, 11) ◦ (α, β) = −16α − 11β = 0; we can do this, for example, with ~w = (α, β) =

(11,−16) . [There are many other answers, all scalar multiples of this one.]

9. If f(x, y) = x2y5 − x+ 3y− 4 , x = x(u, v) =
u

u+ v
and y = y(u, v) = uv − u , use

the Chain Rule to find
∂f

∂u
when u = 1 and v=0 .

First, when (u, v) = (1, 0), then x = 1/(1 + 0) = 1 and y = 1 · 0− 1 = −1 . From the
chain rule, we know that fu = fxxu+fyyu, evaluated at (x, y) = (1,−1) and (u, v) = (1, 0)
. We compute:

fx = 2xy5−1 = −2−1 = −3 , fy = 5x2y4+3 = 5+3 = 8 , xu =
(1)(u+ v)− (u)(1)

(u+ v)2
=

v

(u+ v)2
= 0 , and yu = v − 1 = 0 − 1 = −1 ; so at (u, v) = (1, 0) we have fu(1, 0) =

(−3)(0) + (8)(−1) = −8 .



10. If f(x, y) =
x2y

x+ y
, and γ(t) = (x(t), y(t)) is a parametrized curve in the domain of f

with γ(0) = (2,−1) and γ′(0) = (3, 5), then what is
d

dt
f(γ(t))

∣

∣

∣

t=0

?

By the chain rule,
df

dt
= fxxt + fyyt . We compute: fx =

(2xy)(x+ y)− (x2y)(1)

(x+ y)2

and fy =
(x2)(x+ y)− (x2y)(1)

(x+ y)2
.

At (2,−1), these are fx =
(−4)(1)− (−4)(1)

(1)2
= 0 and fy =

(4)(1)− (−4)(1)

(1)2
= 8, so

df

dt
= fxxt + fyyt = (0)(3) + (8)(5) = 40 .

11. Find the second partial derivatives of the function h(x, y) = x sin(xy2) .

We compute: hx = (1)(sin(xy2)) + (x)(cos(xy2))(y2) = sin(xy2) + xy2 cos(xy2)

hy = x(cos(xy2))(2xy) = 2x2y cos(xy2) . Then for the second partials:

hxx − (hx)x = (cos(xy2))(y2) + [(y2)(cos(xy2)) + (xy2)(− sin(xy2))(y2)]
= 2y2 cos(xy2)− xy4 sin(xy2)

hxy = hyx = (hy)x = (4xy)(cos(xy2)) + (2x2y)(− sin(xy2))(y2)
= 4xy cos(xy2)− 2x2y3 sin(xy2)

hyy = (hy)y = (2x2)(cos(xy2)) + (2x2y)(− sin(xy2))(2xy)
= 2x2 cos(xy2)− 4x3y2 sin(xy2)

12. For which value(s) of c are the vectors ~v = (1, 2, c) and ~w = (−5, 2c, 4) orthogonal?

We want ~v • ~w = 0, so 0 = (1, 2, c) • (−5, 2c, 4) = −5 + 4c + 4c = −5 + 8c, so 8c = 5
and so c = 5/8. This gives the vectors

~v = (1, 2,
5

8
) and ~w = (−5,

5

4
, 4) .

[As a check, ~v • ~w = (1, 2,
5

8
) • (−5,

5

4
, 4) = −5 +

5

2
+

5

2
= 0, as desired.]

13. Find the equation of the plane passing through the points

(2, 3, 5) , (1,−1, 0) , and (1, 1, 2) .

Labeling the points P,Q, and R for convenience, we have ~v = ~PQ = (−1,−4,−5) and

~w = ~PR = (−1,−2,−3). These are directions in the plane, and so their cross product will
be normal to the plane. So we compute

~n = ~v×~w = (
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= (12− 10,−(3− 5), 2− 4) = (2, 2,−2).

[As a check, we can compute ~v • ~n = −2− 8 + 10 = 0 and ~w • ~n = −2− 4 + 6 = 0 .]

With a normal ~n = (2, 2,−2) to the plane and a point P = (2, 3, 5) on the plane, we
can give the equation for the plane as ~n • [(x, y, z)− (2, 3, 5)] = 0, i.e.,



2(x− 2) + 2(y − 3)− 2(z − 5) = 0 .

[There are, of course, many other equivalent answers, obtained by choosing, for ex-
ample, another point to use as the tails of our vectors....]

14. What is the rate of change of the function f(x, y) =
xy

x+ 2y
, at the point (4, 2), and

in the direction of the vector ~v = (1, 1) ?

The rate of change is the directional derivative, computed as ∇f(4, 2) • ~v. So we
compute:

f(x, y) = xy(x+ 2y)−1, so fx = (y)(x+ 2y)−1 + (xy)[(−1)(x+ 2y)−2(1)], and
fy = (x)(x+ 2y)−1 + (xy)[(−1)(x+ 2y)−2(2)]. So

∇f(4, 2) = ((2)(8)−1+(8)(−1)(8)−2, (4)(8)−1+ (8)(−1)(8)−2(2)) = (
1

4
− 1

8
,
1

2
− 1

4
) =

(
1

8
,
1

4
)

So the rate of change is ∇f(4, 2) • ~v = (
1

8
,
1

4
) • (1, 1) = 1

8
+

1

4
=

3

8
.

[Under some interpretations, we should divide this number by ||(1, 1)|| =
√
2, in order

to be using the unit vector pointing in the direction of ~v .]

15. Find the equation of the plane tangent to the graph of the function

g(x, y) = x3y − 4x2y2 + 2xy4 at the point (2, 1, g(2, 1)).

We can describe this plane using a point on the plane and its x− and y−slopes, all of
which the function can provide.

The point of tangency (2, 1, g(2, 1)) = (2, 1, 8− 16 + 4) = (2, 1,−4) is a point on the
plane.

For the slopes, we compute:

gx = 3x2y − 8xy2 + 2y4, so fx(2, 1) = 12− 16 + 2 = −2 = m = x−slope.

gy = x3 − 8x2y + 8xy3, so fy(2, 1) = 8− 32 + 16 = −8 = n = y−slope.

So the equation for the tangent plane is given by

z = g(2, 1) + gx(2, 1)(x− 2) + gy(2, 1)(y − 1) = −4− 2(x− 2)− 8(y − 1)

Multiplying out, this can be converted to z = −4− 2x+ 4− 8y + 8 = −2x− 8y + 8 .

16. If x = u2v and y = uv2, then show how to express the partial derivatives of

g(u, v) = f(x(u, v), y(u, v)) at the point (u, v) = (2,−1), in terms of the

(at the moment unknown) partial derivatives
∂f

∂x
and

∂f

∂y
.

Writing z = g(u, v) = f(x(u, v), y(u, v)), by the Chain rule, we know that zu =
zxxu + zyyu and zv = zxxv + zyyv. We can compute

x(2,−1) = 22(−1) = −4 and y(2,−1) = 2(−1)2 = 2, so (x, y) = (−4, 2), while

xu = 2uv , xv = u2 , yu = v2 , and yv = 2uv, and so at (u, v) = (2,−1), we have



xu = −4 , xv = 4 , yu = 1 , and yv = −4. So at (u, v) = (2,−1), we have

gu(2,−1) = [fx(−4, 2)][−4] + [fy(−4, 2)][1] = −4fx(−4, 2) + fy(−4, 2) , and

gv(2,−1) = [fx(−4, 2)][4] + [fy(−4, 2)][−4] = 4fx(−4, 2)− 4fy(−4, 2) .

17. Find the second partial derivatives of the function h(x, y) = xexy .

We compute:

hx = (1)(exy) + (x)(exyy) = exy + xyexy and hy = (0)(exy) + (x)(exyx) = x2exy . So

hxx = (hx)x = (exy)(y) + [(y)exy + (xy)(exyy)] = 2yexy + xy2exy ,

hxy = (hx)y = (exy)(x) + [(x)(exy) + (xy)(exyx)] = 2xexy + x2yexy ,

hyx = (hy)x = (2x)(exy) + (x2)(exyy) = 2xexy + x2yexy = hxy , and

hyy = (x2)(exyx) = x3exy .

18. Find the local extrema of the function f(x, y) = 2x4 − 2xy + y2 , and determine, for
each, if it is a local max. local min, or saddle point.

Local extrema occur at critical points, so we compute: fx = 8x3−2y and fy = −2x+2y
. These are never undefined, so our only critical points will occur when both are 0.
fy = −2x + 2y = 0 means 2y = 2x, so y = x. Substituting this into fx = 8x3 − 2y = 0
gives 8x3 − 2x = (2x)(4x2 − 1) = 0, so either x = 0, or 4x2 − 1 = 0, so x = 0 or x = 1/2
or x = −1/2. This yields the three critical points (0, 0) , (1/2, 1/2) , and (−1/2,−1/2).

To determine their character, we need the Hessian: fxx = 24x2, fxy = −2, and
fyy = 2, so H = fxxfyy − (fxy)

2 = 48x2 − 4. At (0, 0) H = −4 < 0, so (0, 0) is a saddle
point. At (1/2, 1/2), H = 48/4 − 4 = 12 − 4 = 8 > 0 and fxx = 24/4 = 6 > 0, so
(1/2, 1/2) is a local min. And at (−1/2,−1/2), H = 48/4 − 4 = 12 − 4 = 8 > 0 and
fxx = 24/4 = 6 > 0 as well, so (−1/2,−1/2) is also a local min.


