Quiz number 5 Solutions

For the function

$$f(x,y) = 5x^2 + x^2y - 12x - \frac{1}{3}y^3$$

find the critical points of f, and for one of them (your choice), determine if the critical point is a relative maximum, relative minimum, or saddle point for the function f.

To find the critical points, we compute:

$$f_x = 10x + 2xy - 12 = 0$$
 and $f_y = x^2 - \frac{1}{3}(3y^2) = x^2 - y^2 = 0$

[Note that we never have f_x or f_y undefined.]

So $f_y = 0$ tells us that $x^2 = y^2$, so y = x or y = -x. We treat each case separately:

If
$$y = x$$
, then $f_x = 0$ tells us that $10x + 2xy - 12 = 10x + 2x^2 - 12 = 0$, so

$$2x^2 + 10x - 12 = 2(x^2 + 5x - 6) = 2(x + 6)(x - 1) = 0$$
, so $x = 1$ or $x = -6$.

This gives the critical points (1,1) and (-6,-6).

If y = -x, then $f_x = 0$ tells us that $10x + 2xy - 12 = 10x + 2x(-x) - 12 = 10x - 2x^2 - 12 = 0$, so

$$2x^2 - 10x + 12 = 2(x^2 - 5x + 6) = 2(x - 2)(x - 3) = 0$$
, so $x = 2$ or $x = 3$.

This gives the critical points (2, -2) and (3, -3).

So the critical points of f are (-6, -6), (1, 1), (2, -2) and (3, -3).

To determine their type, we need the second partial derivatives and the discriminant:

$$f_{xx} = 10 + 2y$$
, $f_{yy} = -2y$, and $f_{xy} = 2x$

So for each of the critical points we have:

At
$$(-6, -6)$$
: $f_{xx} = -2 < 0$, $f_{yy} = 12$, $f_{xy} = -12$,
$$D = (-2)(12) - (-12)^2 = -120 < 0,$$

so D < 0 and this is a saddle point.

At
$$(1,1)$$
: $f_{xx} = 12 > 0$, $f_{yy} = -2$, $f_{xy} = 2$, $D = (12)(-2) - (2)^2 = -28 < 0$, so $D < 0$ and this is a saddle point.

At
$$(2,-2)$$
: $f_{xx} = 6 > 0$, $f_{yy} = 4$, $f_{xy} = 4$, $D = (6)(4) - (4)^2 = 8 > 0$, so $f_{xx} > 0$ and $D > 0$, so this is a relative minimum.

At
$$(3,-3)$$
: $f_{xx} = 4 > 0$, $f_{yy} = 6$, $f_{xy} = 6$, $D = (4)(6) - (6)^2 = -12 < 0$, so $D < 0$, so this is a saddle point.

An alternative, but slightly less friendly(?), approach is to use $f_x = 10x + 2xy - 12 = 0$ to write $y = \frac{12 - 10x}{2x} = \frac{6 - 5x}{x}$, so $f_y = 0 = x^2 - y^2$ becomes $x^2 - \frac{(6 - 5x)^2}{x^2} = 0$ [Solve this quartic?! Can you 'see' the solutions x = 1, x = 2?], so $x^4 - (5x - 6)^2 = 0$, so $(x^2)^2 = (5x - 6)^2$, so $x^2 = 5x - 6$ or $x^2 = -(5x - 6)$. Which leads to the same two quadratics!