Math 107H

Topics for the first exam

Integration

Basic list:

$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \text{ (provided } n \neq -1)$$

$$\int \sin(kx) \, dx = \frac{-\cos(kx)}{k} + C$$

$$\int \sec^2 x \, dx = \tan x + C$$

$$\int \sec x \tan x \, dx = \sec x + C$$

$$\int \tan x \, dx = \ln|\sin x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$

$$\int e^x \, dx = e^x + C$$

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{Arctan}(\frac{x}{a}) + c$$

$$\int \int \int \frac{dx}{x^2 - a^2} = \frac{1}{a} \operatorname{Arcsec}(\frac{x}{a}) + c$$

$$\int \int \int \int \frac{dx}{x^2 - a^2} = \frac{1}{a} \operatorname{Arcsec}(\frac{x}{a}) + c$$

Basic integration rules: for k=constant,

$$\int k \cdot f(x) \, dx = k \int f(x) \, dx$$

$$\int (f(x) \pm g(x)) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

The Fundamental Theorem of Calculus

 $\int_a^x f(t) dt = F(x)$ is a function of x. F(x) =the area under graph of f, from a to x.

FTC 2: If f is cts, then F'(x) = f(x) (F is an antideriv of f!)

Since any two antiderivatives differ by a constant, and $F(b) = \int_a^b f(t) dt$, we get

FTC 1: If f is cts, and F is an antideriv of f, then $\int_a^b f(x) dx = F(b) - F(a) = F(x) \mid_a^b f$

Integration by substitution. The idea: reverse the chain rule!

$$g(x) = u$$
, then $\frac{d}{dx}f(g(x)) = \frac{d}{dx}f(u) = f'(u)\frac{du}{dx}$, so $\int f'(u)\frac{du}{dx} dx = \int f'(u) du = f(u) + c$

 $\int f(g(x))g'(x)\ dx$; set u=g(x) , then $du=g'(x)\ dx,$

so
$$\int f(g(x))g'(x) dx = \int f(u) du$$
, where $u = g(x)$

Example: $\int x(x^2-3)^4 dx$; set $u=x^2-3$, so du=2x dx. Then $\int x(x^2-3)^4 dx = \frac{1}{2} \int (x^2-3)^4 2x dx = \frac{1}{2} \int u^4 du |_{u=x^2-3} = \frac{1}{2} \frac{u^5}{5} + c |_{u=x^2-3} = \frac{(x^2-3)^5}{10} + c$

The three most important points:

- 1. Make sure that you calculate (and then set aside) your du before doing step 2!
- 2. Make sure everything gets changed from x's to u's
- 3. $\underline{\mathbf{Don't}}$ push x's through the integral sign! They're $\underline{\mathbf{not}}$ constants!

We can use u-substitution directly with a definite integral, provided we remember that

$$\int_{a}^{b} f(x) dx \text{ really means } \int_{x=a}^{x=b} f(x) dx \text{, and we remember to change } \underline{\text{all }} x \text{'s to } u \text{'s!}$$

Ex: $\int_{1}^{2} x(1+x^{2})^{6} dx$; set $u = 1+x^{2}$, du = 2x dx. when x = 1, u = 2; when x = 2, u = 5;

so
$$\int_{1}^{2} x(1+x^{2})^{6} dx = \frac{1}{2} \int_{2}^{5} u^{6} du = \dots$$

Basic integration formulas (AKA dirty tricks):

change the function without changing the function!

complete the square

$$ax^{2} + bx + c = a(x^{2} + rx) + c = a(x + r/2)^{2} + (c - (r/2)^{2})$$

Ex:
$$\int \frac{1}{x^{2} + 2x + 2} dx = \int \frac{1}{(x+1)^{2} + 1} dx$$

use trig identities

 $\sin^2 x + \cos^2 x = 1$, $\tan^2 x + 1 = \sec^2 x$, $\sin(2x) = 2\sin x \cos x$, $\frac{\tan x}{\sec x} = \sin x$, etc.

Ex:
$$\int \frac{\sin^2 x}{\cos x} \, dx = \int \frac{1 - \cos^2 x}{\cos x} \, dx = \dots$$

pull fractions apart; put fractions together!

Ex:
$$\int \frac{x+1}{x^3} dx = \int x^{-2} + x^{-3} dx = \dots$$

do polynomial long division

Ex:
$$\int \frac{x^3}{x^2 - 1} dx = \int x + \frac{x}{x^2 - 1} dx = \dots$$

add zero, multiply by one

Ex:
$$\int \sec x \, dx = \int \frac{\sec x (\tan x + \sec x)}{\sec x + \tan x} \, dx = \dots$$
 $\int \frac{x^2}{x^2 + 1} \, dx = \int \frac{x^2 + 1 - 1}{x^2 + 1} \, dx = \dots$

Integration by parts

Product rule: d(uv) = (du)v + u(dv)

reverse: $\int u \, dv = uv - \int v \, du$

Ex: $\int x \cos x \, dx$: set u=x, $dv=\cos x \, dx$ du=dx, $v=\sin x$ (or any <u>other</u> antiderivative) So: $\int x \cos x = x \sin x - \int \sin x \, dx = \dots$

special case:
$$\int f(x) dx$$
; $u = f(x)$, $dv = dx$ $\int f(x) dx = xf(x) - \int xf'(x) dx$
Ex: $\int Arcsin x dx = x Arcsin x - \int \frac{x}{\sqrt{1-x^2}} = \dots$

The basic idea: integrate part of the function (a part that you <u>can</u>), differentiate the rest. Goal: reach an integral that is "nicer".

Ex:
$$\int x^3 \ln x \ dx = (x^4/4) \ln x - \int (x^4/4)(1/x) \ dx = \dots$$

Trig substitution

Idea: get rid of square roots, by turning the stuff inside into a perfect square!

$$\sqrt{a^2 - x^2} : \text{ set } x = a \sin u \text{ . } dx = a \cos u \text{ d}u, \sqrt{a^2 - x^2} = a \cos u$$

$$\text{Ex: } \int \frac{1}{x^2 \sqrt{1 - x^2}} \, dx = \int \frac{\cos u}{\sin^2 u \cos u} \, du \Big|_{x = \sin u} = \dots$$

$$\sqrt{a^2 + x^2} : \text{ set } x = a \tan u \text{ . } dx = a \sec^2 u \text{ d}u, \sqrt{a^2 + x^2} = a \sec u$$

$$\text{Ex: } \int \frac{1}{(x^2 + 4)^{3/2}} \, dx = \int \frac{2 \sec^2 u}{(2 \sec u)^3} \, du \Big|_{x = 2 \tan u} = \dots$$

$$\sqrt{x^2 - a^2} : \text{ set } x = a \sec u \text{ . } dx = a \sec u \tan u \text{ d}u, \sqrt{x^2 - a^2} = a \tan u$$

Ex:
$$\int \frac{1}{x^2 \sqrt{x^2 - 1}} dx = \int \frac{\sec u \tan u}{\sec^2 u \tan u} du \Big|_{x = \sec u} = \dots$$

Undoing the "u-substitution": use right triangles! (<u>Draw</u> a right triangle!) Ex: $x = a \sin u$, then angle u has opposite = x, hypotenuse = a, so adjacent = $\sqrt{a^2 - x^2}$. So $\cos u = (\sqrt{a^2 - x^2})/a$, $\tan u = x/\sqrt{a^2 - x^2}$, etc.

Trig integrals: What trig substitution usually leads to!

$$\int \sin^n x \, \cos^m x \, dx$$

If n is odd, keep one $\sin x$ and turn the others, in pairs, into $\cos x$ (using $\sin^2 x = 1 - \cos^2 x$), then do a u-substitution $u = \cos x$.

If m is odd, reverse the roles of $\sin x$ and $\cos x$.

If both are even, turn the $\sin x$ into $\cos x$ (in pairs) and use the double angle formula

$$\cos^2 x = \frac{1}{2}(1 + \cos(2x))$$

This will convert $\cos^m x$ into a bunch of lower powers of $\cos(2x)$; odd powers can be dealt with by substitution, even powers by another application of the angle doubling formula!

$$\int \sec^n x \tan^m x \, dx = \int \frac{\sin^m x}{\cos^{n+m} x} \, dx$$

If n is even, set two of them aside and convert the rest to $\tan x$ using $\sec^2 x = \tan^2 x + 1$, and use $u = \tan x$.

If m is odd, set one each of $\sec x$, $\tan x$ aside, convert the rest of the $\tan x$ to $\sec x$ using $\tan^2 x = \sec^2 x - 1$, and use $u = \sec x$.

If n is odd and m is even, convert all of the $\tan x$ to $\sec x$ (in pairs), leaving a bunch of powers of $\sec x$. Then use the reduction formula:

$$\int \sec^n x \ dx = \frac{1}{n-1} \sec^{n-2} x \tan x + \frac{n-2}{n-1} \int \sec^{n-2} x \ dx$$

At the end, reach $\int sec^2x \ dx = \tan x + C$ or $\int sec x \ dx = \ln|\sec x + \tan x| + C$

A little "trick" worth knowing:

the substitution $u = \frac{\pi}{2} - x$, since $\sin(\frac{\pi}{2} - x) = \cos x$ and $\cos(\frac{\pi}{2} - x) = \sin x$, will reverse the roles of $\sin x$ and $\cos x$,

so will turn $\cot x$ into $\tan u$ and $\csc x$ into $\sec u$. So, for example, the integral

$$\int \frac{\cos^4 x}{\sin^7 x} dx = \int \csc^3 x \cot^4 x dx, \text{ which our techniques don't cover},$$

becomes $\int \sec^3 u \tan^4 u \ du$, which our techniques <u>do</u> cover.

Partial fractions

rational function = quotient of polynomials

Idea: integrate by writing function as sum of simpler functions

Procedure: f(x) = p(x)/q(x)

- (0): arrange for degree(p) < degree(q); do long division if it isn't
- (1): factor q(x) into linear and irreducible quadratic factors
- (2): group common factors together as powers

(3a): for each group
$$(x-a)^n$$
 add together:

$$\frac{a_1}{x-a} + \dots + \frac{a_n}{(x-a)^n}$$

(3b): for each group $(ax^2 + bx + c)^n$ add together:

$$\frac{a_1x + b_1}{ax^2 + bx + c} + \dots + \frac{a_nx + b_n}{(ax^2 + bx + c)^n}$$

(4) set f(x) = sum of all sums; solve for the 'undetermined' coefficients put sum over a common denomenator (=q(x)); set numerators equal.

always works: multiply out, group common powers, set coeffs of the two polys equal Ex: x + 3 = a(x - 1) + b(x - 2) = (a + b)x + (-a - 2b); 1 = a + b, 3 = -a - 2b

linear term $(x-a)^n$: set x=a, will allow you to solve for a coefficient if $n \ge 2$, take derivatives of both sides! set x=a, gives another coeff.

Ex:
$$\frac{x^2}{(x-1)^2(x^2+1)} = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{Cx+D}{x^2+1}$$
$$= \frac{A(x-1)(x^2+1) + B(x^2+1) + (Cx+D)(x-1)^2}{(x-1)^2(x^2+1)} = \dots$$