A Change of Variables Formula for Double Integrals:
The Successor to u-Substitution

With one variable, we have an integration technique we call u—substitution'
if we set u = g(x), then [} f(g(x))g'(x) dz = [103) g(u

We can interpret this in a way that will help us generalize it to several variables. The func—

tion g carries the interval [a, b] to the interval [g(a), g(b)], and we can imagine computing

the integral | g((a)) g(u) du from Riemann sums, but choosing the points to cut the interval

g(a), g(b)] into using |a, b, by choosing a = zg < 1 < --- < x,, = b and using the points
lg(a), g(

g(a) = g(xo) < g(z1) < -+ < g(xn) = g(b). If we call g(xl) = wu;, then fg( : (u) du is
approximated by

2o (W) Bug =37 f(ui) (wigr —ui) = 3 fg(27))(g(xiv1) — g(2:))
~ 20 f9(@)g (@) (wivy — wi) = 30 f(g(27))g (7)) A

where the approximation in the middle comes from the Mean Value Theorem. But this

last sum is an approximation for f; f(g(x))g'(x) dz, so this last sum gives approximations
to both integrals, implying that the two integrals are equal!

The same idea can be applied to functions of several variables. The idea above is that we

write our Reimann sum for | gg((a)) f(u) du not using evenly-spaced points, but rather using
points determined by the function g. We can do the same thing with several variables,
but instead of using rectangles we use shapes determined by a function g, or rather, the
images of rectangles under the function g. Unlike for a single variable, though, we need
to be a little careful that our change of variables function g does not backtrack (like a

u-substitution function could); more about this later.

The general idea is that if a region R can be described more conveniently using a different
sort, of coordinates, this means that we are describing x and y as functions of different
variables s and t. For example, a circle of radius 4 is a ‘polar’ rectangle:

x=rcosf and y = rsinf, for 0 <r <4and 0 <6 <27

(i.e., polar coordinates). In general, changing coordinates means describing the region R
by
x = z(s,t) and y = y(s,t), for s and ¢t in some region S

That is, we are using a function g(s,t) = (x(s,t),y(s,t)), for a function g : S — R, to
describe the points in R in terms of the points in S. Then we write the integral of the
function f over R as the integral of something else (written in terms of s and t) over the
region S. The question is, the integral of what?

The answer, just like u-substitution, comes from thinking of cutting up S into little rect-
angles S;;, and looking at the little regions R;; that the change of variables function g
carries each to; these regions R;; are a way to cut R into little pieces, which we can use to
create a Rieman sum. The integral of f over R can be approximated by adding up chosen
values over each region R;;, times the area of R;;. By choosing (s;,%;) in \S;;, we can use



[ evaluated at the point (x(s;,t;),y(si,t;)) in R;; as the height of our parallelopiped; the
real question is, what is the area of Rw?

If we think of the rectangles S;; as having sides of (small) length ds and dt, then using
linear approximations to x(s,t) and y(s,t), R;; can be thought of as being approximately
a parallelogram with sides the vectors

(%,%)ds and (gf g‘z)dt
(at least, its area will be approximated by the area of this parallelogram). But we know
how to compute the area of such a parallelogram! It is given by the length of the cross
product of the two sides (adding 0’s to the vectors, so they are in 3-space!), which turns
out to be:

AA;; = |zsyr — xys| ds dt
So the Reimann sum ) f(z;, y,;)Area(R;;) can be approximated by

> f(@(sity), y(sirty))|wsye — wrys| Area(Sy) .

Taking limits as the size of the S;; (i.e, ds and dt) goes to zero, we then obtain:

ffR (z,9) da:dy—ffs x(s,t),y(s,t)) |vsys — 21ys| ds dt

This is our change of variables formula for double integrals. The expression |zsy; — T1ys|
is called the Jacobian (or Jacobian determinant) associated to the change of variables, and
is sometimes written 0(z,y)

|xsyt - xtys| - (9(8,1&)
For example, to integrate a function f over the triangle with vertices (1,1), (2,3), and (3,8),
we can instead integrate over the triangle with vertices (0,0), (1,0), and (0,1), by changing
coordinates. It turns out we can always do this by writing

r=as+bt+candy=ds+et+ f

for appropriate choices of a,b,c,d,e and f. All you need to do is solve the equations
1=a04+00+c¢c,1=d0+e0+ f,2=0al+b0+c¢,3=dl+e0+ f,3 =a0+ bl + ¢, and
8 = d0 + el + f which, in this case, gives a=1,b=2,c=1,d=2,e=7f=1. Sox = s+ 2t + 1
and y = 2s+ 7t + 1. This means that the function g(s,t) = (s+ 2t +1,2s+ 7t + 1) carries
the triangle S with vertices (0,0), (1,0), and (0,1) to the triangle R with vertices (1,1),
(2,3), and (3,8), enabling us to compute integrals over R by writing them as integrals over
S instead.

In this case, we compute that the Jacobian is [1-7 — 22| = |3| = 3. So under this change
of coordinates,

[ o f(y) dA= [ [T f(s+2t+ 1,25+ Tt + 1) -3 ds di
This (depending on f !) will probably be a better integral to compute than trying to
express the integral over R directly as an iterated integral...

Probably our most popular change of variable will be polar coordinates: the function
g(r,0) = (rcosf,rsinf) carries rectangles to interesting shapes (circles, semicircles, pie
sectors). In this case the Jacobian ‘correction factor’ is

|(cosO)(rcosf) — (—rsin)(sinf)| =|r| =1,
allowing us to compute [ [, f(x,y) dz dy as [ [4 f(rcos@,rsinf) r dr df, instead.



