Math 208H ## Why Green's Theorem is true Let R = a region in the plane, and $C = \partial R =$ the boundary of R, traversed counterclock- Let $F = \langle F_1, F_2 \rangle = \text{a vector field on } R$, and let $\text{curl}(F) = (F_2)_x - (F_1)_y$ Then Green's Theorem says that (*) $$\int \int_{R} \operatorname{curl}(F) \ dA = \int_{C} F \cdot \ dr$$ To show this, we think of R as being cut up into (or approximated by) a huge number of tiny rectangles R_{ij} . $\int \int_R \operatorname{curl}(F) dA = \sum_{i,j} \int \int_{R_{ij}} \operatorname{curl}(F) dA$, since R is a "sum" of the R_{ij} 's. Then (**) On the other hand, (***) $$\int_C F \cdot dr = \sum_{i,j} \int_{\partial R_{ij}} F \cdot dr,$$ since the parts of the ∂R_{ij} that lie *inside* of R are counted twice in this sum, but are traversed in opposite directions when they appear. So all of the integrals over the pieces of the ∂R_{ij} cancel, except over the parts that traverse ∂R (which only get counted once!). Because of these two equations (**) and (***), to verify (*) it is enough to show that $\iint_{R_{i,i}} \operatorname{curl}(F) \ dA = \iint_{\partial R_{i,i}} F \cdot \ dr$ This in turn, we can do by an essentially straightforward calculation. We can parametrize ∂R_{ij} as four pieces: $$C_1: r_1(t) = (x_0 + t, y_0), 0 \le t \le h,$$ $$C_2: r_2(t) = (x_0 + h, y_0 + t), 0 \le t \le h$$ $$C_3: r_3(t) = (x_0 + h - t, y_0 + k), 0 \le t \le h$$ $$C_1: r_1(t) = (x_0 + t, y_0), 0 \le t \le h,$$ $$C_2: r_2(t) = (x_0 + h, y_0 + t), 0 \le t \le k,$$ $$C_3: r_3(t) = (x_0 + h - t, y_0 + k), 0 \le t \le h,$$ $$C_4: r_4(t) = (x_0, y_0 + k - t), 0 \le t \le h, \text{ and then}$$ $$\int_{\partial R_{ij}} F \cdot \ dr = \int_{C_1} F \cdot \ dr + \int_{C_2} F \cdot \ dr + \int_{C_3} F \cdot \ dr + \int_{C_4} F \cdot \ dr$$ But, since $$r'_1(t) = \langle 1, 0 \rangle$$, we have $$\int_{C_1} F \cdot dr$$ $$= \int_{C_1}^h F(r_1(t)) \cdot \langle 1, 0 \rangle dt$$ $$= \int_0^h F(r_1(t)) \cdot \langle 1, 0 \rangle dt$$ = $\int_0^h F_1(x_0 + t, y_0) dt$ = $\int_{x_0}^{x_0 + h} F_1(u, y_0) du$ (using the *u*-substitution $u = x_0 + t$), and since $r'_3(t) = \langle -1, 0 \rangle$, we have $$\int_{C_3} F \cdot dr = \int_0^h F(r_3(t)) \cdot \langle -1, 0 \rangle dt = -\int_0^h F_1(x_0 + h - t, y_0 + k) dt = \int_{x_0 + h}^{x_0} F_1(u, y_0 + k) du = -\int_{x_0}^{x_0 + h} F_1(u, y_0 + k) du$$ (using the *u*-substitution $u = x_0 + h - t$). On the other hand, $$\int \int_{R_{ij}} \operatorname{curl}(F) \ dA = \int \int_{R_{ij}} (F_2)_x - (F_1)_y \ dA$$, and $$\begin{split} \int \int_{R_{ij}} -(F_1)_y \ dA \\ &= -\int_{x_0}^{x_0+h} \int_{y_0}^{y_0+k} (F_1)_y \ dy \ dx \\ &= -\int_{x_0}^{x_0+h} (F_1(x,y)|_{y_0}^{y_0+k}) \ dx \\ &= -\int_{x_0}^{x_0+h} F_1(x,y_0+k) - F_1(x,y_0) \ dx \\ &= -\int_{x_0}^{x_0+h} F_1(u,y_0+k) \ du + \int_{x_0}^{x_0+h} F_1(u,y_0) \ du \\ &= \int_{x_0}^{x_0+h} F_1(u,y_0) \ du - \int_{x_0}^{x_0+h} F_1(u,y_0+k) \ du \\ &= \int_{C_1} F \cdot \ dr + \int_{C_3} F \cdot \ dr \end{split}$$ An entirely similar calculation [exercise...] shows that $$\int \int_{R_{ij}} (F_2)_x dA = \int_{C_2} F \cdot dr + \int_{C_4} F \cdot dr$$ and so: $$\begin{split} \int \int_{R_{ij}} \text{curl}(F) \ dA \\ &= \int \int_{R_{ij}} (F_2)_x - (F_1)_y \ dA \\ &= \int \int_{R_{ij}} (F_2)_x \ dA + \int \int_{R_{ij}} - (F_1)_y \ dA \\ &= (\int_{C_2} F \cdot \ dr + \int_{C_4} F \cdot \ dr) + (\int_{C_1} F \cdot \ dr + \int_{C_3} F \cdot \ dr) \\ &= \int_{C_1} F \cdot \ dr + \int_{C_2} F \cdot \ dr + \int_{C_3} F \cdot \ dr + \int_{C_4} F \cdot \ dr \\ &= \int_{\partial R_{ij}} F \cdot \ dr \end{split}$$ as desired!