Math 208H

Topics for third exam
Technically, everything covered on the first two exams, plus
Integrating Functions of Several Variables
The Definite Integral of a Function of Two Variables

In an entirely formal sense, the intergal of a function of one variable is a great big huge sum
of little tiny numbers; we add up things of the form f(c;)Az;, where we cut the interval
[a, b] we are integrating over into little intervals of length Ax;, and pick points ¢; in each
interval. In esssence, the integral is the sum of areas of very thin rectangles, which leads
us to iterpret the integral as the area under the graph of f.

For functions of two variables, we do the exact same thing. To integrate a function f over
a rectangle in the plane, we cut the rectangle into lots of tiny rectangles, with side lengths
Ax; and Ayj, pick a point in each rectangle, and then add up f(x;,y;)Az;Ay; . This
gives an approximation to the actual integral; letting the little side lengths go to zero, we
arrive at what we would call the integral of f over the rectangle R, which we denote by

[ s fdA (where dA denotes the ‘differential of area’ dxdy (or dydz)

The idea is that if we think of f as measuring height above the rectangle, then f(z;,y;)Ax; Ay,
is the volume of a thin rectangular box; letting the A’s go to zero, the integral would then
measure the volume under the graph of f, lying over the rectangle R.

If the region R isn’t a rectangle, we can still use this method of defining an integral; we
simply cover R with tiny rectangles, take the same sum, and let the A’s go to 0.

Of course, we have no reason to believe that as the A’s go to 0, this collection of sums will
converge to a single number. But it is a basic fact that if the function f is continuous, and
the region R isn’t too ugly, then these sums always will converge.

Iterated Integrals

Of course, the preceding approach is no way to compute a double integral! Instead, we (as
usual) steal an idea from one-variable calculus.

The idea is that we already know how to compute volumes, and so we implicitly know how
to compute double integrals! We can compute the volume of a region by integrating the
area of a slice. You can do this two ways; (thinking in terms of the region R in the plane)
you can slice R into horizontal lines, and integrate the area of the slices dy, or you can
slice R into vertical lines, and integrate the slices dz.

But each slice can be interpreted as an integral; the area of a horizontal slice is the integral
of f, thought of as just a function of x, and the area of a vertical slice is the integral of f,
thought of as just a function of y. This leads to two ways to compute our integral:

g fdA= fcd(f: f(z,y) dz) dy (for horiz slices) = f:(fcd f(z,y) dy) dz (for vert slices)

In each case, the inner integral is thought of as the integral of a function of one variable.
It just happens to be a different variable in each case. In the case of a rectangle, the limits
of integration are just numbers, as we have written it. In the case of a more complicated



region R, the inner limits of integration might depend on where we cut. The idea is that a
slice along a horizontal line is a slice along y = constant, and the endpoints of the integral
might depend on y; for a slice along a vertical line (x = constant), the endpoints might
depend on x .

So, e.g., to integrate a function f over the region lying between the graphs of y = 4x and

y = x3, we would compute either

fofsf:vydydac or fo y/4fxy)dx)dy
Which should we compute? Whichever one is easier! They give the same number!
Double integrals with polar coordinates
Polar coordinates describe a point in the plane by distance and direction, r and . We can
translate from rectangular to polar coordinates by

(z,y) = (rcosf,rsinf)
We can use this new coordinate system to simplify some integration problems, in part

because a circular disk is a polar rectangle, defined by 0 < r < Ry and 0 < 0 < 27.
Similarly, circular sectors can be described as ‘polar rectangles’.

But in so doing, we must interpret dA in terms of dr and df ; this is completely analogous
to what we must do with u-substitution. If we have a small circular sector, made between
the circles of radius r and r + Ar, and between the lines making angles # and 6 + A6, it
has area approximately rArAf; so

dA = r dr dbf

and so [ fR z,y) dA = [ [, f(rcos@,rsinf) r dr df , where D is how we describe the
region R in polar coordinates.

For example, the integral of the function f(x,y) = xy on the semicircle lying between the
z-axis and y=+v/9 — x2 can be computed as

0 3
/ / (rcos@)(rsin@)r dr do
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Polar coordinates illustrate the benefit of decribing points in the plane differently - it can
simplify some double integrals. The idea is to change variables; it’s basically u-substitution
for function of two variables.

Change of variables

The general idea is that if a region R can be described more conveniently using a different
sort of coordinates, this means that we are describing x and y as functions of different
variables s and t. For example, a circle of radius 4 is better described as

x =rcosf and y = rsinf, for 0 <r <4 and 0 <0 <27
(i.e., polar coordinates). In general, changing coordinates means describing the region R
by

x = x(s,t) and y = y(s,t), for s and ¢ in some region S

Then we write the integral of the function f over R as the integral of something else
(written in terms of s and t) over the region S. The question is, the integral of what? The



answer comes from thinking of cutting up S into little rectangles S;;, and looking at the
little regions R;; the change of variables carries each to. The integral of f over R can be
approximated by adding up values in each region R;;, times the area of R;;. By choosing
(si,t;) in S;;, we can use the point (x(s;,t;),y(si,t;)) in R;;; the question is, what is the
area of R;;7.
If we think of the rectangles S;; as having sides of length ds and dt, then using linear
approximations to x(s,t) and y(s,t), R;; can be approximated by a parallelogram with
sides the vectors
or Oy or Oy

(8 " Os ot’ ot
Luckily, we know how to compute the area of such a parallelogram; it’s given by the length
of the cross product of the two sides (add 0’s to the vectors, so they are in 3-space!), which
turns out to be:

—=)ds and (—, =)dt

AAij = |zsyr — 21ys| ds di
Taking limits as the size of the S;; goes to zero, we obtain:

[ [ fx,y) de dy = [ [g f(x(s,t),y(s,t)) |xsye — 24ys| ds dt

The expression |zsy: — z1ys| is called the Jacobian associated to the change of variables,
and is sometimes written

O(z,y)

(s, t)

For example, to integrate a function f over the triangle with vertices (1,1), (2,3), and (3,8),
we can instead integrate over the triangle with vertices (0,0), (1,0), and (0,1), by changing
coordinates. It turns out we can always do this by writing

r=as+bt+candy=ds+et+ f

"Tsyt - xtys’ =

for appropriate choices of a,b,c,d,e and f. All you need to do is solve the equations
1=a0+b0+¢,1=d0+e0+ f,2=0al+b0+c¢,3=dl+e0+ f,3=a0+ bl + ¢, and
8 = d0 + el + f which, in this case, gives a=1,b=2,c=1,d=2,e=7,f=1. Sox = s+ 2t +1
and y = 2s + 7t 4+ 1, giving Jacobian 1 7 2-2 = 3. So under this change of coordinates,

[ o f@y) dA= [ [~ f(s+2t+1,25+ Tt +1) -3 ds dt
Surface Area

In Calc II we have seen how to compute the area of a surface of revolution. With double
integrals, we can carry out such computations for much more general surfaces. For a
surface X given as the graph of a function

z = f(x,y) sitting over the region R in the z-y plane

we can compute the area of this surface in the time-honored way: approximate it by
surfaces whose area we can compute. In this case, the idea is to think of ¥ as made up of
lots of tiny pieces, each the graph of f lying over a collection of tiny rectangles that we
cut up (or cover up) R with. But for a tiny rectangle (i.e., over small distances) the graph
of f looks like a plane (the tangent plane, or linear approximation, to f), and the graph
of a plane over a rectangle is a parallelogram. So we can think of the graph of f as being
approximated by tiny parallelograms, and so its surface area is approximately the sum of



the areas of these parallelograms. As with the change of variables formula above, we can
compute these areas as the length of the cross product of the two sides. In this case (using
the linear approximation we computed earlier) these two sides are

<17 07 fJ?) and <07 17 fy>
whose cross pruduct is (—fz, —fy,1) . The area of the parallelogram is therefore

V()24 (fy)?+1

Then in our now time-honored tradition, our great big huge sum becomes an integral; the
surface area of that part of the graph of f which lies over the region R is

surface area = [ [ \/(f2)? + (fy)?2 +1 dA

Triple Integrals

Triple integrals are just like double integrals, only more so. We can define them as a limit
of a huge sum; here the terms in the sum would be the value of the function f time the
volume of a tiny rectangular box. The usual interpretation of a triple integral arises by
thinking of the function f as giving the density of the matter at each point of a solid region
W in 3-space. Since density times volume is mass, the integral of f over the region W
would compute the mass of the solid object occupying the region W. In the special case
that f is the function 1, the integral will compute the volume of the region W.

Again, as with double integrals, the way we really comupute a triple integral is as a (triply)
iterated integral. You pick a direction to slice (z=constant, y=constant, or z=constant)
W up, and compute the integral of f over each slice. Each of these is a double integral
(computed as an iterated integral), whose value depends on the variable you sliced along.
To compute the integral over W, you integrate these double integrals over the last variable,
getting three iterated integrals.

Put slightly differently, you can evaluate a triple integral by integrating out each variable,
one at a time. Typically, we start with z, since our region W is usually described as
the region lying between the graphs of two functions, given as z=blah and z=bleh . The
idea is to first, for each fixed value of x and y, integrate the function f, dz, from blah to
bleh. (Ther resulting values depend on x and vy, i.e., are a function of x and y.) Then
we integrate over the region, R, in the plane consisting of the points (x,y) such that the
vertical line hits the region W. We usually call this region R the shadow of W in the z-y
plane. In symbols

S I o § V= [ [o(il f(y.2) d2) dA
For example, the integral of a function over the region lying above the z-y plane and inside
the sphere of radius 2, centered at the origin, would be computed as

ffR mf($;y7z) dZ) dA:f f% \/mf(l'»%z) dZ) dy) dx

where R is the shadow of W (in this case, the disk of radius 2, centered at the origin, in
the z-y plane).

Change of variables for Triple Integrals

As with double integrals, we can carry out a change of coordinates for 3 variables; we then
write



x=x(s,t,u), y = y(s,t,u), and z = z(s,t,u)

A little box with sides of length ds, dt, and du gets carried to a little parallelopiped, with
sides the vectors

($s79372's) dS, (ztayt;zt) dtv and (xuayU7Zu> du

(call these Vi, V¢, and V). This has volume |V e (V; x V)|, which is the Jacobian of this
change of variables, and serves as the necessary “fudge factor” to express an integral in
terms of s, ¢, and wu.

Triple integrals with spherical and cylindrical coordinates

It turns out that we can easily impose two new coordinate systems on 3-space; each can
sometimes be used to simplify an integration problem, usually by simplifying the region
we integrate over.

With cylindrical coordinates, we simply replace (z,y, z) with (r, 6, z), i.e., use polar coor-
dinates in the zy-plane. In the new coordinate system, dV = (r dr df) dz , since that will
be the volume of a small ‘cylinder’ of height dz lying over the small sector in the zy-plane
that we use to compute dA above.

Usually, we will actually integrate in cylindrical coordinates in the order dz dr df, since
this coordinate system is most useful when the cross-sections z=constant of our region are
disks (so the limits of integrations for z will depend only on ).

Spherical coordinates are much like polar coordinates; we describe a point (z,y,z) by
distance (which we call p and direction, except we need to use two angles to completely
specify the direction; first, the angle 6 that (x,y,0) makes with the xz-axis in the xy-plane,
and then the angle ¢ that the line through our point makes with the (positive) z-axis
(which we can always assume lies between 0 and 7). A little trigonometry leads us to the
formulas

(z,y,2z) = (pcosBsin ¢, psin O sin ¢, p cos ¢)
Again, the idea is that regions difficult to describe in rectangular coordinates can be far

easier to describe spherically; for example, the inside of a sphere of radius Ry can be
described as the rectangle 0 < p < Ry, 0 < 6 <2m, and 0 < ¢ < 7.

It is a bit more work to compute what dV is in spherical coordinates; computing the
Jacobian, we find that it is

dv = p?sin¢ dp df do

So the ‘change of variables formula’ for spherical coordinates reads:

[ [ Jw f@y,2) dV = [ [ [ f(pcosBsing, psin@sin ¢, pcos @) p*sine dp df de

So, for example, the integral of the function f(z,y,z) = xz over the top half of a ball of
radius 5 could be computed as

5 p2w  pm/2
/ / / (pcosBsing)(pcos @) (p*sing) dé db dp
o Jo Jo



