
Math 208

Topics for third exam

Technically, everything covered on the �rst two exams, plus

Chapter 15: Multiple Integrals

x4: Double integrals with polar coordinates

Polar coordinates describe a point in the plane by distance and direction, r and �. We
can translate from rectangular to polar coordinates by

(x; y) = (r cos �; r sin �)
We can use this new coordinate system to simplify some integration problems, in part
because a circular disk is a polar rectangle, de�ned by 0 � r � R0 and 0 � � � 2�.
Similarly, circular sectors can be described as `polar rectangles'.

But in so doing, we must interpret dA in terms of dr and d� ; this is completely
analogous to what we must do with u-substitution. If we have a small circular sector, made
between the circles of radius r and r + �r, and between the lines making angles � and
� +��, it has area approximately r�r��; so

dA = r dr d�

and so

Z
R

f(x; y) dA =

Z
D

f(r cos �; r sin �) r dr d� , where D is how we describe the region

R in polar coordinates.
For example, the integral of the function f(x; y) = xy on the semicircle lying between

the x-axis and y=
p
9� x2 can be computed asZ �

0

Z 3

0

(r cos �)(r sin �)r dr d�

x5: Triple integrals with spherical and cylindrical coordinates

We can in fact easily impose two new coordinate systems on 3-space; each can sometimes
be used to simplify an integration problem, usually by simplifying the region we integrate
over.

With cylindrical coordinates, we simply replace (x; y; z) with (r; �; z), i.e., use polar
coordinates in the xy-plane. In the new coordinate system, dV = (r dr d�) dz , since
that will be the volume of a small `cylinder' of height dz lying over the small sector in the
xy-plane that we use to compute dA above.

Usually, we will actually integrate in cylindrical coordinates in the order dz dr d�, since
this coordinate system is most useful when the cross-sections z=constant of our region are
disks (so the limits of integrations for z will depend only on r).

Spherical coordinates are much like polar coordinates; we describe a point (x; y; z) by
distance (which we call � and direction, except we need to use two angles to completely
specify the direction; �rst, the angle � that (x; y; 0) makes with the x-axis in the xy-plane,
and then the angle � that the line through our point makes with the (positive) z-axis (which
we can always assume lies between 0 and �). A little trigonometry leads us to the formulas

x; y; z) = (� cos � sin�; � sin � sin�; � cos�)
Again, the idea is that regions diÆcult to describe in rectangular coordinates can be far
easier to describe spherically; for example, a sphere of radius R0 can be described as the
rectangle 0 � � � R0, o � � � 2�, and 0 � � � �.

It is a bit more trouble to work out what dV is in spherical coordinates; it turns out
to be

dv = �2 sin� d� d� d�
.



So the `change of variables formula' for spherical coordinates reads:Z
W

f(x; y; z) dV =

Z
R

f(� cos � sin�; � sin � sin�; � cos�) �2 sin� d� d� d�

So, for example, the integral of the function f(x; y; z) = xz over the top half of a sphere of
radius 5 could be computed asZ 5

0

Z 2�

0

2�=20 (� cos � sin�)(� cos�) (�2 sin�) d� d� d�

Chapter 16: Parametrized curves

x1: Parametrized curves

So far, we have talked about functions of several variables; functions which need several
inputs in order to get a single output. Our next topic is parametrized curves; functions which
have one input but several outputs. We will focus on functions of the form

~r(t) = (x(t); y(t)) or ~r(t) = (x(t); y(t); z(t))
i.e., curves in the plane or 3-space. If we think of t as time, then what ~r does is give us a
point in the plane or 3-space at each moment of time. Thinking of ~r as the position of a
particle, the particle sweeps out a path or curve, C, in the plane or 3-space as time passes;
we think of ~r as parametrizing this curve C.

We therefore make a distinction between a curve (= a collection of point laid out in a
string) and a parametrized curve (= a function which traces out a curve). A single curve
can have many di�erent parametrizations; for example,

~r1(t) = (cos t; sin t) , 0 � t � 2�
~r1(t) = (cos 2t; sin 2t) , 0 � t � �
~r1(t) = (sin t; cos t) , 0 � t � 2�
~r1(t) = (cos t2; sin t2) , 0 � t � p

2�
all parametrize the (unit) circle in the plane. Their di�ences with the �rst are that they go
twice as fast, or travel in the opposite direction, or starts slowly and then moves faster and
faster, respectively.

Of special interest are lines; they can be described as having a starting place and a
direction they travel, and so can be parametrized by ~r(t) = P + t~v, where P is the starting
point and ~v is the direction (for example, the di�erencve of two points lying along the line).

As with ordinary functions, we can build new parametrized curves from old ones by, for
example, adding constants to each coordinate (which translates the curve by those amounts),
or multiplying coordinates by constants (which streches the curve in those directions).

x2: Velocity and acceleration

When we think of t as time, we can imagine ourselves as travelling along the para-
metrized curve ~r(t), and so at each point we can make sense of both velocity and acceleration.
Velocity, which is the instantaneous rate of change of position, can be easily calculated from
our parametrization ~r(t) = x(t); y(t); z(t) as ~v(t) = ~r0(t) = x0(t); y0(t); z0(t)

Similarly, acceleration can be computed as ~a(t) = ~r00(t) = x00(t); y00(t); z00(t)
On useful fact: if the length of the velocity (i.e., its speed), jj~v(t)jj is constant, then ~a(t)

is always perpendicular to ~v(t)
And speaking of length, we can compute the length of a parametrized curve can be

computed by integrating its speed: the length of the parametrized curve ~r(t), a � t � b, is

Length =

Z b

a

jj~v(t)jj dt

Chapter 17: Vector �elds



x1: Vector �elds
A vector �eld is a �eld of vectors, i.e., a choice of vector F (x; y) (or F (x; y; z)) in the

plane for every point in some part of the plane (the domain of F ), and similarly in 3-space.
We can think of F as F (x; y) = (F1(x; y); F2(x; y)) ; each coordinate of F is a function of
several variables. We can represent a vector �eld pictorially by place the vector F (x; y) in
the plane with its tail at the point (x; y) . A vector �eld is therefore a choice of a direction
(and magmitude) at each point in the plane (or 3-space...). Such objects naturally occur in
many disciplines, e.g., a vector �eld may represent the wind velocity at each point in the
plane, or the direction and magnitude of the current in a river.

One of the most important class of vector �elds that we will encounter are the gradient

vector �elds. If we have an (ordinary) function f(x; y; z) of several variables, then for each
point (x; y; z), r(f) can be thought of as a vector, which we have in fact already taken to
drawing with its tail at the point (x; y; z) (so that, for example, we can use it as a normal
vector for the tangent plane to the graph of f). Many vector �elds are gradient vector �elds,
e.g., (y; x) = r(xy) ; one of the question we will need to answer is `How do you tell when a
vector �eld is a gradient vector �eld?'. We shall see several answers to this question in the
next chapter.

Chapter 18: Line Integrals

x1: The basic idea
We introduced vector �elds F (x; y) in the previous chapter in large part because these

are the objects that we can most naturally integrate over a (parametrized) curve. The
reason for this is that along a curve we have the notion of a velocity vector ~v at each point,
and we can compare these two vectors, by taking their dot product. This tells us the extent
to which F points in the direction of ~v. Integration is all about taking averages, and so we
can think if the integral of F over the curved C as measuring the average extent to which
F points in the same direction as C.

We can set this up as we have all other integrals, as a limit of sums. Picking points
~ci strung along the curve C, we can add together the dot products F (~ci) � ( ~ci+1 � ~ci), and
then take a limit as the lengths of the vectors ~ci+1 � ~ci between consecutive points along
the curve goes to 0. We denote this number byZ

C

F � d~r
Such a quantity can be interpreted in several ways; we will mostly focus on the notion

of work. If we interpret F as measuring the amount of force being applied to an object at

each point (e.g., the pull due to gravity), then

Z
C

F � d~r measures the amount of work done

by F as we move along C. In other words, it measures the amount that the force �eld F
helped us move along C (since moving in the same direction, it helps push us along, while
when moving opposite to it, it would slow us down).

In the case that F measures the current in a river or lake or ocean, and C is a closed

curve (meaning it begins and ends at the same point), we interpret the integral of F along
C as the circulation around C, since it measures the extent to which the current would push

you around the curve C.

x2: Computing using parametrized curves

Of course, as usual, we would never want to compute a line integral by taking a limit!

But if we use a parametrization of C, we can interpret

Z
C

F � d~r as an `ordinary' integral.

The idea is that if we use a parametrization ~r(t) for C then F (~ci) � ( ~ci+1 � ~ci) becomes



F (~r(ti)) � (~r(ti+1)� ~r(ti))
But using tangent lines, we can approximate ~r(ti+1)� ~r(ti) by ~r

0(ti)(ti+1 � ti) = ~r0(ti)�y .
so we can instead compute our line integral asZ

C

F � d~r =

Z b

a

F (~r(t)) � ~r0(t) dt

where ~r parametrizes C with a � t � b .

Some notation that we will occasionally use: If the vector �eld F = (P;Q;R) and ~r(t)
= (x(t); y(t); z(t)), then d~r = (dx; dy; dz), so F � d~r = Pdx+Qdy +Rdz . So we can writeZ
C

F � d~r =

Z b

a

Pdx+Qdy + Rdz

x3: Gradient �elds and path independence

In general, the computation of a line integral can be quite cumbersome, in part because
we need to evaluate the vector �eld F at the point ~r(t), while can yield quite complicated
formulas. But there is one class of vector �elds that are really quite easy to integrate:
gradient vector �elds. This is because we can compute:

if F = r(f), then F (~r(t)) � ~r0(t) =
@f

@x

dx

dt
+
@f

@y

dy

dt
+
@f

@z

dz

dt
=

d

dt
(f(~r(t)))

so

Z
C

F � d~r =
Z b

a

F (~r(t)) � ~r0(t) dt =

Z b

a

d

dt
(f(~r(t))) dt = f(~r(b))� f(~r(a)) . We call this

the Fundamental Theorem of Line Integrals.
We say that a vector �eld f is path-independent (or conservative) if the value of a line

integral over a curve C depends only on what the endpoints P;Q of C are, i.e., the integral
would be the same of any other curve running from P to Q. Our result right above can then
be interpreted as saying that gradient vector �elds are conservative. What is amazing is
that it turns out that every conservative vector �eld F is the gradient vector �eld for some
function f . We can alctually write down the function, too (by stealing an idea from the
Fundamental Theorem of Calculus...), as

f(x; y) =

Z
C

F � d~r , where C is any curve from (0,0) to (x; y).

x4: Green's Theorem
All of which is very nice, but far too theoretical for practical purposes. What we need

are simple ways to tell that a vector �eld is conservative, and to build the function f when
it is. Luckily, this is not too hard!

First, a slight reinterpretation: a vector �eld F is path-independent if
R
C
F � d~r=0 for

every closed curve C.
If F is conservative, then F = (F1; F2) = (fx; fy) for some function f . But then by

using the equality of mixed partials for f , we can then conclude that we must have (F1)y =
(F2)x . In fact, this is enough to guarantee that F is conservative; this is because of Green's

Theorem: de�ning the curl of F to be (F2)x � (F1)y, we have

If R is a region in the plane, and C is the boundary of R, parametrized so that we travel
counterclockwise around R, thenR

C
F � d~r =

R
R
curl(F ) dA

In particular, if the curl is 0, then the integral of F along C is always 0 for every closed
curve, so F is conservative.

We can actually use this result to evaluate line integrals or double integrals, whichever
we wish. For example, we can compute the area of a region R as a line integral, by integrating



the functionb 1 over R, and then using a vector �eld around the boundary whose curl is 1,
such as (0; y) or (�x; 0) or (x; 2y) or ....

This allows us to spot conservative vector �elds quite easily, but doesn't tell us how to
compute the function it is the gradient of (called its potential function). But in practice this

is not hard; we simply write down a function f with
@f

@x
=F1 (e.g., f(x; y) =

R
F1(x; y)dx).

This is actually a family of functions, because we have the constant of integration to worry
about, which we should really think of as a function of y (because we integrated a function

of two variables, dx). To �gure out which function of y, simply take
@

@y
of your function,

and compare with F2 =
@f

@y
; just adjust the constant of integration accordingly.

Finally, there is a similar result for vector �elds in dimension 3; for F = (F1; F2; F3),
we can de�ne curel(F ) = \r� F" = ((F3)y � (F2)z;�((F3)x � (F1)z); (F2)x � (F1)y)

Then F = rf exactly when curl(F ) = (0,0,0) ; and we can actually construct f using
a procedure analogous to the one we came up with for vector �elds with two variables.

Chapter 19: Flux Integrals

x1: The basic idea
The basic idea is that we can also integrate vector �elds (in 3-space) over a surface.

The interpretation we will use is that we are measuring the amount of 
uid 
owing through
a surface (e.g., a cell membrane) immersed in the 
uid.

We can think of a wire-frame surface sitting in a river; we would like to compute the
amount of water 
owing (each second, perhaps) 
owing through the surface. (Or, you can
think of computing the amount of rain falling on the surface of your body...)

Our input is a (velocity) vector �eld F , and a surface S, described in some fashion (e.g.,
as the graph of a function of two vairables). The idea is that a piece of surface which is
tilted with respect to the vector �eld will not contribute much to the total. In other words,
the amount 
owing through the surface is related to the extent to which the (unti) normal

vector for the surface is pointing in the same direction as F . We measure this with the dot
product, F � ~n. This amount is also clearly proportional to the size of the surface; twice as
much surface will give twice as much 
ow. This leads us to believe that what we need to
add up in order to compute the 
ow through the surface is F � ~n dA (to take into account
tilt and size). So we de�ne the 
ux integral of a vector �eld F over a surface S to beR

S
~F � d ~A =

R
S
( ~F � ~n)dA

Now at every point of the surface S, we actually have two choices of unit normal vector ~n;
we will see in the next section how to make a more or less `obvious' consistent choice of
normal, the outward pointing normal. For example, if S is a sphere of radius R, centered
at (0,0,0), the outward unit normal at (x; y; z) is just (x=R; y=R; z=R). If we choose F to
be this same vector, then it is easy to see that F � ~n = 1, and so our 
ux integral will just
compute the area of the surface S.

x2: Computing using graphs, cylindrical, and spherical coordinates

Of course, still don't want to compute 
ux integrals as limits of sums, either! What we
need is some approaches to calculating ~ndA . We study three cases:

Swuppose S is the graph of a function f , having domain R in the plane. What we would
really like to do is to compute the 
ux integral as the integral of a function over R. To do
this, we note that the vector v = (�fx;�fy; 1) is normal to the graph of f ; it's the normal
vector we used to express the tangent plane to the graph of f . It just so happens that v =



(1; 0; fx) � (0; 1; fy), and so its length is equal to the area of the parallelogram that these
two vectors span. But!, these are exactly the paralleograms we would use to approximate
the graph, i.e., this length is also dA. So, ~ndA = (�fx;�fy; 1), and soR

S
F � ~ndA =

R
R
F (x; y; f(x; y)) � (�fx;�fy; 1) dx dy dz

We can also use cylindrical and spherical coordinates, in special cases. If S is a piece of
a cylinder cylinder, given by r = r0, for � and z in some range of values R, then the outward
normal at r0; �; z is (cos �; sin �; 0), while dA = r0 d� dz, soR

S
F � ~ndA =

R
R
F (r0 cos �; r0 sin �; z) � (cos �; sin �; 0)r0 d� dz

If S is a piece of sphere, given by � = �0 for � and � in some range R of values, then
the outward normal is (cos � sin�; sin � sin�; cos�) while dA is �20 sin� d� d�, soR

S
F � ~ndA =R

R
F (�0 cos � sin�; �0 sin � sin�; �0 cos�) � (cos � sin�; sin � sin�; cos�) �20 sin� d� d�


