
Math 208

Topics for the second exam

(Technically, everything covered on the �rst exam, plus)

Chapter 13: Di�erentiation

x6: The Chain Rule

If f is a function of the variables x and y, and both x and y depend on a single variable t, then
in a certain sense, f is a fuinction of t; f(x; y) = f(x(t); y(t)); it is a composition. To �nd
its derivative with respect to t, we can turn to di�erentials:

df = fxdx+ fydy, while dx =
dx

dt
dt and dy =
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This is the (or rather, one of the) Chain Rule(s) for functions of several variables. A similar
line of reasoning would lead us to:

If z = f(u; v) and u = u(x; y) and v = v(x; y), then
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In general, we can imagine a composition of functions of several variables as a picture with each
variable linked by a line going up to functions it is a variable of, and linked by a line going
down to variables it is a function of, with the original function f at the top. To �nd the
derivative of f with respect to a variable, one �nds all paths leading down from f to the
variable, multiplying together all of the partial derivatives of one varaible w.r.t. the variable
below it, and adding these products together, one for each path. This can, as before, be
veri�ed using di�erentials.

x7: Second Order Partial Derivatives

Just as in one variable calculus, a (partial) derivative is a function; so it has its own partial
derivatives. These are called second partial derivatives.

We write
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This leads to the slightly confusing convention that
@2f

@x@y
= fyx while

@2f

@y@x
= fxy, but as luck

would have it:

Fact: If fxy and fyx are both continuous, then they are equal [[Mixed partials are equal.]] So
while at �rst glance a function of two variables would seem to have four second partials,
it `really' has only three. (Similarly, a function of three variables `really' has six second
partials, and not nine.)

In one-variable calculus, the second derivative measures concavity, or the rate at which the
graph of f bends. The second partials fxx and fyy measure the bending of the graph of f
in the x- and y-directions, while fxy measures the rate at which the x-slope of f changes
as you move in the y-direction, i.e., the amount that the graph is twisting as you walk in
the y direction. The statement that fxy = fyx then says that the amount of twisting in the
y-direction is always the same as the amount of twisting in the x-direction, at any point,
which is by no means obvious!



x8: Taylor Approximations
In some sense, the culmination of one-variable calculus is the observation that any function can

be approximated by a polynomial; and the polynomial of degree n that `best' approximates
f near the point a is the one which has the same (higher) derivatives as f at a, up to the
nth derivative. This leads to the de�nition of the Taylor polynomial :

pn(x) = f(a) + f 0(a)(x� a) + � � � + f (n)(a)

n!
(x� a)n

Functions of two variables are not much di�erent; we just replace the word `derivative' with
`partial derivative' ! So for example, the degree one Taylor polynomial is

L(x; y) = f(a; b) + fx(a; b)(x� a) + fy(a; b)(y� b)
which is nothing more than our old formula for the tangent plane to the graph of f at the point

(a; b; f(a; b)) .
We will soon need the second degree version (which for simplicity we will write for the point

(a; b) = (0,0)) :

Q(x; y) = L(x; y) +
fxx(0; 0)

2
x2 + fxy(0; 0)xy +

fyy(0; 0)

2
y2 = L(x; y) + Ax2 + Bxy + Cy2

As before, L and Q are the `best' linear and quadratic approximations to f , near the point
(a; b), in a sense that can be made precise; basically, L � f shrinks to 0 like a quadratic,
near (a; b), while Q � f shrinks like a cubic (which shrinks to 0 faster, when your input is
small).

Di�erentiability

In one-variable calculus, `f is di�erentiable' is just another way of saying `the derivative of f
exists'. But with several variables, di�erentiablility means more than that all of the partial
derivatives exist.

A function of several variables is di�erentiable at a point if the tangent plane to the graph of f
at that point makes a good approximation to the function, near the point of tangency. In
the words of the previous paragraph, L� f shrinks to 0 faster than a linear function would.

The basic fact, that we keep using, is that if the partial derivatives of f don't just exist at a
point, but are also continuous near the point, then f is di�erentiable in this more precise
sense.

Chapter 14: Optimization: Local and Global Extrema

x1: Local Extrema
The partial derivatives of f measuire the rate of change of f in each of the coordinate directions.

So they are giving us partial information (no pun intended) about how thew function f is
rising and falling. And just as in one-variable calculus, we ought to be able to turn this into
a procedure for �ndong out when a function is at its maximum or minimum.

The basic idea is that at a max or min for f , then, thinking of f just as a function of x, we
would still think we were at a max or min, so the derivative, as a function of x, will be 0
(if it is de�ned). In other words, fx = 0. similarly, we would �nd that fy = 0, as well.
following one-variable theory, therefore, we say that

A point (a; b) is a critical point for the function f if fx(a; b) and fy(a; b) are each either 0 or
unde�ned. (A similar notion would hold for functions of more than two variables.)

Just as with the one-variable theory, then, if we wish to �nd the max or min of a function,
what we �rst do is �nd the critical points; if thew function has a max or min, it will occur
at a critical point.

and just as before, we have a `Second Derivative Test' for �guring out the di�erence between a
(local) max and a (local) min (or neither, which we will call a saddle point). The point is



that at a critical point, f looks like its second degree Taylor polynomial, which (simplifying
things somewhat) is described as Q(x; y) = Ax2 + Bxy + Cy2 (since the �rst derivatives
are 0). The actual shape of the graph of Q is basically described by one number, called the
descriminant, which (in terms of partial derivatives) is given by

D = fxxfyy�(fxy)2
(Basically, Q looks like one of x2 + y2 (local min), �x2 � y2 (local max), or x2 � y2 (saddle),

and D tells you if the signs are the same (D > 0) or opposite (D < 0) . More speci�cally,
if, at a critical point (a; b),

D > 0 and fxx> 0 then (a; b) is a local min; if
D > 0 and fxx< 0 then (a; b) is a local max; and if
D < 0, then (a; b) is a saddle point
(We get no information if D = 0.)

x2: Global Extrema: Unconstrained Optimization

Critical points help us �nd local extrema. To �nd global extrema, we take our cue from one-
variable land, where the procedure was (1) Identify the domain, (2) �nd critical points inside
the domain, (3) plug critical points and endpoints into f , (4) biggest is the max, smallest is
the min.

For two variables, we do (essentially) exactly the same thing:

(1) Identify the domain
(2) Find critical points in the interior of the domain
(3) Identify the (potential) max and min values on the boundary of the domain (more about

this later!)
(4) Plug the critical points, and your potential points on the boundary
(5) biggest is max, smnallewst is min

This works if the domain is closed and bounded (think, e.g., of a closed interval in the x direction
and a closd intervasl in the y direction, or the inside of a circle in the plane). Usually, in
practice, we don't have such nice domains; but we usually know from physical considerations
that our function has a max or min (e.g., �nd the maximum volume you can enclose in a
box made from 300 square inches of cardboard...), and so we still know that it has to occur
at a critical point of our function.

x3: Constrained Optimization: Lagrange Multipliers

Most optimization problems that arise naturally at not unconstrained; we are usually trying to
maximize one function while satisfying another. Even the problem above is best phrased
this way; maximize volume subject to the constraint that surface area equals 300. We can
use the one-variable calculus trick of solving the constraint for one variable, and plugging
this into the function we wish to maximize, or we can take a completely di�erent (and often
better) approach:

The basic idea is that if we think of our constraint as describing a level curve (or surface) of a
function g, then we are trying to maximize or minimize f among all the points of the level
curve. If the level curves of f are cutting across our level curve of g, it's easy to see that we
can icrease or decrease f while still staying on the level curve of g. So at a max or min, the
level curve of f has to be tangent to our constraining level curve of g. This in turn means:

At a max or min of f subject to the constraint g, rf = �rg (for some real number �)
We must also satisfy the constraint : g(x; y) = c.

So to solve a constrained optimization problem (m,ax.min of f subject to the constraint
g(x; y) = c) we solve

rf = �rg and g(x; y) = c



This in turn allows us to �nish our procedure for �nding global extrema, since step (3) can be
interpreted as a constrained optimization problem (max or min on the boundary). In these
terms,

To optimize f subject to the condition g(x; y) � c, we (1) solve rf = 0 and g(x; y) < c, (2)
solve rf = �rg and g(x; y) = c, (3) plug all of these points into f , (4) the biggest is the
max, the smallest is the min.

[This works �ne, unless the region g(x; y) � c runs o� to in�nity; but often, physical consider-
ations will still tell us that one of our critical points is an optimum.]

Chapter 15: Integrating Functions of Several Variables

x1: The De�nite Integral of a Function of Two Variables

In an entirely formal sense, the intergal of a function of one variable is a great big huge sum
of little tiny numbers; we add up things of the form f(ci)�xi, where we cut the interval
[a; b] we are integrating over into little intervals of length �xi, and pick points ci in each
interval. In esssence, the integral is the sum of areas of very thin rectangles, which leads us
to iterpret the integral as the area under the graph of f .

For functions of two variables, we do the exact same thing. To integrate a function f over a
rectangle in the plane, we cut the rectangle into lots of tiny rectangles, with side lengths
�xi and �yj , pick a point in each rectangle, and then add up f(xi; yj)�xi�yj . This gives
an approximation to the actual integral; letting the little side length go to zero, we arrive
at what we would call the integral of f over the rectangle R, which we denote byR

R
f dA (where dA denotes the `di�erential of area' dxdy (or dydx)

The idea is that if we think of f as measuring height above the rectangle, then f(xi; yj)�xi�yj
is the volume of a thin rectangular box; letting the �'s go to zero, the integral would then
measure the volume under the graph of f , lying over the rectangle R.

If the region R isn't a rectangle, we can still use this method of de�ning an integral; we simply
cover R with tiny rectangles, take the same sum, and let the �'s go to 0.

Of course, we have no reason to believe that as the �'s go to 0, this collection of sums will
converge to a single number. But it is a basic fact that if the function f is continuous, and
the region R isn't too ugly, then these sums always will converge.

x2: Iterated Integrals

Of course, the preceding approach is no way to compute a double integral! Instead, we (as
usual) steal an idea from one-variable calculus.

The idea is that we already know how to compute volumes, and so we implicitly know how to
compute double integrals! We can compute the volume of a region by integrating the area

of a slice. You can do this two ways; (thinking in terms of the region R in the plane) you
can slice R into horizontal lines, and integrate the area of the slices dy, or you can slice R
into vertical lines, and integrate the slices dx.

but each slice can be interpreted as an integral; the area of a horizontal slice is the integral of
f , thought of as just a function of x, and the area of a vertical slice is the integral of f ,
thought of as just a function of y. This leads to two ways to compute our integral:
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R
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In each case, the inner integral is thought of as the integral of a function of one variable. It
just happens to be a di�erent variable in each case. In the case of a rectangle, the limits
of integration are just numbers, as we have written it. In the case of a more complicated
region R, the inner limits of integration might depend on where we cut. The idea is that a
slice along a horizontal line is a slice along y = constant, and the endpoints of the integral



might depend on y; for a slice along a vertical line (x = constant), the endpoints might
depend on x .

So, e.g., to integrate a function f over the region lying between the graphs of y = 4x and
y = x3, we would compute either
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f(x; y) dy) dx or

R 8

0
(
R y1=3

y=4
f(x; y) dx) dy

Which should we compute? Whichever one is easier! They give the same number!

x3: Triple Integrals
Triple integrals are just like double integrals, only more so. We can de�ne them as a limit of a

huge sum; here the terms in the sum would be the value of the function f time the volume
of a tiny rectangular box. The usual interpretation of a triple integral arises by thinking
of the function f as giving the density of the matter at each point of a solid region W in
3-space. Since density times volume is mass, the integral of f over the region W would
compute the mass of the solid object occupying the region W . In the special case that f is
the function 1, the integral will compute the volume of the region W .

Again, as with double integrals, the way we really comupute a triple integral is as a (triply)
iterated integral. You pick a direction to slice (x=constant, y=constant, or z=constant)
W up, and compute the integral of f over each slice. Each of these is a double integral
(computed as an iterated integral), whose value depends on the variable you sliced along.
To compute the integral over W , you integrate these double integrals over the last variable,
getting three iterated integrals.

Put slightly di�erently, you can evaluate a triple integral by integrating out each variable, one
at a time. Typically, we start with z, since our region W is usually described as the region
lying between the graphs of two functions, given as z=blah and z=bleh . The idea is to
�rst, for each �xed value of x and y, integrate the function f , dz, from blah to bleh. (Ther
resulting values depend on x and y, i.e., are a function of x and y.) Then we integrate over
the region, R, in the plane consisting of the points (x; y) such that the vertical line hits the
region W . We usually call this region R the shadow of W in the x-y plane. In symbols

R
W
f dV =

R
R
(
R e(x;y)

a(x;y) f(x; y; z) dz) dA

For example, the integral of a function over the region lying above the x-y plane and inside the
sphere of radius 2, centered at the origin, would be computed as
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where R is the shadow of W (in this case, the disk of radius 2,m centered at the origin, in the
x-y plane).


