
Math 208

Topics from Chapter 20: Calculus of Vector Fields

x1: The divergence of a vector �eld

In terms of the coordinates ~F = (F1; F2; F3) of a vector �eld, the divergence is
div(F ) = (F1)x + (F2)y + (F3)z

It can be identi�ed with the 
ux density of the vector �eld ~F at a point P : this should
be though of as the 
ux integral of F through a tiny box around the point P .

div(F ) = the limit as the side length goes to 0, of the 
ux through the sides of a box
centered at P , divided by the volume of the box.

A vector �eld F is divergence-free if div(F ) = 0. For example, F = (y; z; x) is diver-
gence free, but F = (x; y; z) is not; div(F ) = 3.

Some formulas that can help to calculate divergence:

div(fF ) = (rf) � F = f � (divF )
div(F �G) = (curl F ) �G � F � (curlG) in 3-space

div(curl( ~F )) = 0 in 3-space

x2: The Divergence Theorem
If W is a region in 3-space, it boundary is a surface S. (S might actually consist of

several pieces; this won't reallt e�ect our discussion.) We can choise normal vectors for
each piece of S by insisting that ~n alway points out of W . Then we have, for any vector
�eld F which is de�ned everywhere in W :

The Divergence Theorem:

Z
S

~F � d ~A =

Z
W

(div F ) dV

In other words, we can compute 
ux integrals over a surface S that forms the boundary
of a region W , by computing the intgral of a di�erent function over W . This is especially
useful when the vector �eld is divergence-free; for example if the regionW has two surfaces
for boundary and F is divergence-free, then the 
ux integral of F over one surface, with
normals pointing out of W , is equal to the 
ux integral of F over the other surface, with
normals pointing intoW . Even if F is not divergence-free, we can compute the 
ux integral
of one as the 
ux integral of the other plus the triple integral over W .

x3: The curl of a vector �eld

We have already met the curl of a vector �eld ~F = (F1; F2; F3 in 3-space; in terms of
coordinates:

curl(~F ) = ((F3)y � (F2)z;�((F3)x � (F1)z); (F2)x � (F1)y)

It can be used to compute the circulation density of the vector �eld ~F , at the point
P , in the direction of a (unit) vector ~n:

curl( ~F ) � ~n = circ~n(~F )

= the limit, as the side lengths go to 0, of the line integral of ~F around the boundary
of a little square around P and perpendicular to ~n, divided by the area of the square.)

We have already used the curl to detect conservative vector �elds; this stems from the
formula

curl(r ~F ) = (0,0,0)



A vector �eld ~F is curl-free if curl ~F = (0,0,0) . This means that in any box in which ~F

is de�ned, ~F is a gradient vector �eld (although it is possible that ~F cannot be expressed

as the gradient of a function everywhere that ~F is de�ned at the same time; the standard
example of this is the vector �eld

~F = (
�y

x2 + y2
;

x

x2 + y2
; 0)

~F is curl-free, but it is not a gradient vector �eld, since (as you can check) the line integral

of ~F around the circle of radius one in the x-y plane with center (0,0,0) . Green's Theorem

does not work, because ~F (and so its curl) is not de�ned on the entire disk bounded by
the circle.)

x4: Stokes' Theorem
If S is a surface in 3-space, with a normal orientation ~n, the boundary of S is a colection

of paramatrized curves (there can easily be more than one, e.g, if S is a cylinder). We
can orient each curve using a right-hand rule; if we stand on the curve and walk along
it the chosen orientation with our heads pointing in the direction of ~N , then the surface
S dshould always be on our left. Then Stokes' Theorem say that, for any vector �eld ~F

de�ned everywhere on S: Z
C

~F � d~r =
R
S
(curl ~F ) � d ~A

This allows us to compute line integrals as 
ux integrals, and, with a little work, 
ux
integrals as line integrals.

For example, it says that the line integral of a curl-free vector �eld ~F around a closed
curve is always 0, so long as the curve is the boundary of a surface contained entirely in
the domain of ~F .

We say that a vector �eld ~F is a curl �eld if ~F = curl( ~G) for some vector �eld ~G . ~G

is called a vector potential of ~F . Then Stokes' Theorem says that, for any surface S in the
domain of ~F with boundary C,Z

S

~F � d ~A =

Z
S

curl ~G � d ~A =

Z
C

~G � d~r

So, for example, for a curl �eld ~F and two surfaces S1 and S2 with the same boundary
C, we have Z

S1

~F � d ~A =

Z
S2

~F � d ~A

So the 
ux integral of a curl �eld really depends just on the boundary of the surface,
not on the surface.

We can test for whether or not ~F is a curl �eld, using the divergence, since div(curl( ~G))
= 0, so a curl �eld must be divergence-free. (The opposite is almost true; it is true, for
example, if the vector �eld is de�ned in a big box.)

The whole idea behind these three theorems (Green's, Divergence, and Stokes') is that
the integral of one kind of function over one kind of region can be computed instead as
the integral of another kind of function over the boundary of the region.

Green's: Integral of the vector �eld ~F over a closed curve in the plane equals integral
of its curl of ~F over the region in the plane that the curve bounds.



Divergence: The 
ux integral of a vector �eld ~F through the boundary of a region in
3-space equals the integrsal of the divergence of ~F over the region in 3-space.

Stokes': The line integral of the vector �eld ~F over a closed curve C in 3-space equals
the 
ux integral of the curl of ~F over any surface S that has C as its boundary.

Note that Green's Theorem is really just a special case of Stokes' (where the curve C

lies in the plane, and the third coordinate of ~F just happens to be 0). All of these, like
the Fundamental Theorem of Line Integrals, are really a kind of Fundamental Theorem of
Calculus, where we are computing a kind of integral by instead computing something else
across the boundary of the region we are interested in. We could keep doing this, �nding
a relation between integfrals over regions in 4-space (or higher!) in terms of integrals over
thier `boundary', but we won't do that....


