
Math 203

Topics for the Chapter 10 quiz:
Probability

To do:

Describe the probability model for a trial: sample space, oucomes, probabilities.

Compute probablilities of events for a trial with equally likely outcomes.

Construct a weighted rooted tree diagram for a multistage trial, compute probabilities of
events.

Compute the conditional probability of an event.

Compute the expected value of a probability model.

Probability is the study of the long-term behavior of random phenomena, where random,
basically, means that knowledge of what the phenomenon has done before will not let
you decide what it will do n̆ext. Such phenomena include flipping coins, rolling dice, the
Dow Jones Industrial Average, etc. The basic idea is that while the object’s short term
behavior is impossible to predict, its long term (average) behavior can be predicted with
great accuracy!
Each observation of the object is a trial (e.g., the flip of a coin; and each possible outcome
of the trial is an event. The probability of each event predicts how many times the event
will occur, in a large number of trials.
We can express these things in a probability model. It consists of two things:

1. A sample space S = the collection of all possible outcomes for our trial
2. A probability ( = a number between 0 and 1) for each outcome.
The idea is that the probability describes the fraction of times we would ĕxpect our outcome
to occur in a very large number of trials.
The individual probablilities must add up to one, because: If we let an event mean, more
generally, some collection of outcomes, then the probability of the event should be the sum
of the individual probabilities of each event. Consequently, the sum od all the probabil-
ities should be the probability that some one of the outcomes occurs in each trial, i.e.,
the fraction of the time that something happens! Since s̆omething always happens, this
probability is one.

Ex: flipping a (fair!) coin; the sample space is {heads,tails}, and each has a probability of
.5 .
Ex: rolling a pair of dice: there are 36 possible outcomes (if we keep track of which die is
which), each having a probability of 1/36 .
These probability models describe equally likely outcomes; each outcome has the same
probability, which add up to 1; so each outcome has probability 1/(the size of the sample
space).

Basic properties of probability models:
A, B = events = collections of possible outcomes; A = complement of A = all possible
outcomes not in A. P (A) = probability of event A. A∪B (= union) = the outcomes that
are in A or B (or both). A ∩ B (= intersection) = the outcomes that are in both A and
B. Then:

0 ≤ P (A) ≤ 1
P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

P (A) = 1 − P (A)
P (S) = 1 (in a trial, something happens...)

Two events are mutually exclusive if A∩B is empty, i.e., they share no outcome in common.
For mutually exclusive events, we have P (A∪B) = P (A) + P (B). Different outcomes are
mutually exclusive, so the probability of an event = the sum of the probabilities of each
individual outcome in the event.

Tree diagrams:



Trees can help us keep track of the relationships among outcomes, and compute the proba-
bilities of events, especially for multistage trials: A trial which is a combination of simpler
(to compute the probability of!) trials occuring one after the other. This includes the
possiblity that what is done in a later stage depends on the outcome of an earlier stage.
Examples: (a) draw three balls from a jar (without replacing them between each stage);
(b) flip a coin, if heads, roll a die, if tails spin a wheel; (c) roll a 4-sided die and then spin
a wheel with numbers 1 through 4, if the die is smaller than the wheel, roll the die again,
then take the sum of the die and the wheel as outcome.

The tree describes all of the possible outcomes at each stage of the trial. For example,
flipping a coin three times:
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The top vertex is the root, the start of
the trial. for each successive stage of the
trial, we send out branches for each of the
possible outcomes of the stage, from each
of the outcomes of the previous stage that
the next stage acts upon. At the bottom
are the leaves, which represent the posible
outcomes of the multi-stage trial. For a 3
coin flip, there are 8 possible outcomes.
What each one is can be determined by
reading outcomes for each stage from the
root to the leaf. For example, the fourth
leaf from the left is the outcome HTT.

The tree diagram for example (c) is:
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The vertices on the second row with no branches out of them are also leaves.

The tree diagram allows us to see what the possible outcomes of a multi-stage trial are,
but more than that, it allows us to compute the probabilities of those outcomes. The idea
is that each stage consists of a “simpler” trial, whose probabilities we can compute. We
can label each branch with the probability that, at that stage, the outcome at its end will
occur. For example, with the 3 coin flip of a (fair) coin:
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Each label is 1/2, since each flip is fair.
Then the probability of each leaf (that is,
of the multi-stage trial ending with the
outcome represented by that leaf) is the
product of the probabilities on the branches
leading to that leaf. This is because if we
think in terms of a large number of these
multistage trials, if the labels leading to
the leaf are p1, . . . , pk, then p1 of the time,
the first stage will lead us down the first
branch leading to our leaf (that’s what the
p1 means!); of those times, p2 of the time
we will go down the second branch, so p2



of p1 of the time (i.e., p1p2 of the time!), the trial leads us down to the end of the second
branch. Repeating this reasoning all of the way down, we find that p1 · · · pk of the time,
the multi-stage trial ends at the leaf we were interested in. So, in this case, we find that
each outcome of our 3 coin flip occurs 1/8 =(1/2)(1/2)(1/2) of the time.

For example (c), assuming both the die and the wheel are fair, each outcome for each stage
has a 1/4 chance of occuring. So the outcomes on the 2nd row occur 1/16 of the time, and
each outcome on the 3rd row occurs 1/64 of the time.

This allows us to compute the probabilities of each individual outcome. To compute the
probability of an event, we, as before, add up the probabilities of the outcomes in the
event. These two properties are summed up in the

Multiplication Rule: The probability of a leaf is the product of the probabilities along
the branches from root to leaf.
Addition Rule: The probability of an event is the sum of the probabilities of the leaves
in the event.

For example, in example (c), the probability that we end with a sum of 5 is

P ({123, 132, 141, 232, 241, 32, 341, 41} =
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[Without rolling the die again, just rolling, spinning, and adding, the probability of getting
a sum of 5 would be 4(1/16)=1/4. So rerolling makes getting a 5 less likely!]

Conditional Probability:

One of the most interesting aspects of probability is that the probability of an event
depends on what you underbarknow. For an ordinary deck of cards, the probability of
drawing a 3 from the deck is 1/13 (4 3’s out of 52 cards). But if happen to know that
the card can’t be the 3 of diamonds (because somebody told you it wasn’t?) then you
know that the probability is really 3/51 (3 3’s out of 51 remaining cards), instead. The
probability is “conditioned” (changed) by your knowledge.

More generally, P (A) is the relative likelihood that the outcome of a trial is in A. But if
we already know that the outcome lies in B (extra knowledge), then to land in A it must
really land in A∩B. So given that we know it lies in B, the probability that is in A, which
we denote P (A|B) = the probability of A given B, is really the relative size of A ∩ B in
B, that is, P (A ∩ B)/P (B). This is the likehood that, of the outcomes that land in B,
we also land in A. Put differently, we can write P (A ∩ B) = P (A|B)P (B); if 1/3=P (B)
of the time we land in B and, of those times (i.e., given we are in B), 2/5=P (A|B) of the
time we land in A, then P (A ∩ B) = (1/3)(2/5) = P (B)P (A|B) of the time we land in
both A and B.

As an example (work out the tree diagram!), suppose we have two jars, one with 2 white
(W) and 3 black (B) marbles, and the other with 4 white and 2 black marbles, and we flip
a coin, heads (H) drawing from the first jar and tails (T) from the second. The outcomes
are {HW, HB, TW, TB}, and a tree diagram works out the probabilities. Then

P (heads|black) = P ({HB})/P ({HB, TB}) =
(1/2)(3/5)

(1/2)(3/5) + (1/2)(2/6)
=

9

14
while P (heads) = P ({HW, HB}) = (1/2)(2/5) + (1/2)(3/5) = 1/2. So knowing that we
drew a black marble tells us that it is more likely that coin came up heads than we would
have otherwise expected. The extra information changed our understanding of the possible
outcomes of the coin flip.

The idea of conditional probabilities arise in many situations. One interesting example is
medical tests for the presence of disease: a test has a certain probability of saying that you
have the disease (”positive”) if you have the disease, and a (different) probability of saying
that you don’t (”negative”) if you don’t. Ideally, we would like both of these numbers to
be high, but usually it is a trade-off between the two, in the design of a test. Suppose
that for a given disease, which is known to affect .03 of the population, a test will be
positive .99 of the time if you have the disease, and will be negative .98 of the time if you



don’t. What is the probability that you have the disease, given that you test positive?
(The point: whether you have the diesease is ”unknown”; we know the test result!). We
can model this as a multi-stage ”trial”: first there is whether or not you have the disease,
and second there is the test. We know the probabilities to assign to each branch (build
the weighted tree!), and the possible outcomes (DP, DN, dP, dN) [d = no disease], and we
compute P (D|P ) = P (DP )/(P ({DP, dP}) = ((.03)(.99)/((.03)(.99) + (.97)(.02)) = .604
. So a positive test result only gives a 60% chance of have the disease. So 40% of the
time you test positive but do not have the disease (”false positive”). In practice, tests are
usually designs to minimze false negatives; you have the disease but the test says no. In
this instance, the false negative probability (D|N) is, well, you compute it!

Two events A, B are independent if knowledge of one doesn’t effect the probability of the
other, i.e., P (A|B) = P (A). From our formula, this works out to P (A ∩B) = P (A)P (B).
For example, the numbers that come up on two dice when we roll them are independent;
knowing one doesn’t let us predict the other.

Expected Value:

The whole idea of probability is to predict the likelihood of an event over a large number
of trials. If the outcomes are numbers (think: either I pay you something or you pay me!),
then we can find the average of the outcomes over a large number of trials: this is the
expected value of the trial (or of the probability model).

If a probability model has (numerical) outcomes x1, . . . , xk, with probabilities p1, . . . , pk,
then the expected value of the model, which typically has the unfortunate name of E, is

E = p1x1 + · · · pkxk

The basic idea is that for a large number N of trials, each xi will occur approximately Npi

times; if we average these numbers, we will be adding N numbers, Npi of which are xi,
and dividing by N , giving

((Np1)x1 + · · · (Npk)xk))/N = p1x1 + · · · pkxk for an average.

As a motivational example for what comes next, think of a poll, where the outcomes are
yes,no. Think of them as being 1 and 0, instead. Then if 80%, say, of the population
would answer yes, then if we make asking an individual a trial, the probability of ”yes” is
.8, and the expected value of the trial is .8 . This doesn’t mean that for a large number
of trials we will see an average outcome of .8, just (as the name implies) that we expect
to! Our main question, now, is to decide ”how often will a large number of trials result in
an average outcome close to (far from?) the expected value?” Or put slightly differently,
how much can we trust that if we were to run a large number of trials, the average value
of out outcomes would turn out to be close to the theoretical expected value?


