Math 203 Contemporary Mathematics

Topics for the first quiz: Check Digit Systems and Modular Arithmetic

To do:
Compute the check digit from the description of a system.
Recover a missing digit knowing the remainder of the digits (detect single digit errors).
Describe how a system can or cannot detect one of the two typical errors made in entering
a number with a check digit: single digit errors and the transposition of two adjacent
digits.
Main tools: solve \(a \equiv r \pmod{m} \) for \(r \) (i.e., find remainders); solve \(cx + r \equiv 0 \pmod{m} \)
for \(x \).

A unifying language for check digit systems: modular arithmetic.
Starting point: quotients and remainders. Given two whole numbers \(a \) and \(m \), there are
unique numbers \(q \) (the quotient) and \(r \) (the remainder) with \(0 \leq r \leq m - 1 \) satisfying
\(a = q \cdot m + r \). Two ways to compute: \(\frac{a}{m} = q + \frac{r}{m} \), so \(q \) = the integer part of \(\frac{a}{m} \) (the part
to the left of the decimal point) and the remainder \(r = m \frac{r}{m} \) is \(m \) times the part to the
right of the decimal point. Or: repeatedly subtract/add multiples of \(m \) to \(a \) until you get
a number between 0 and \(m - 1 \); that is \(r \), and then \(a - r \) is a multiple of \(m \), and \(q \) can be
recovered by dividing. (That is: find multiples of \(m \) so that \(a - q m = r \) is between 0 and
\(m - 1 \), then \(r \) must be the remainder and \(q \) must be the quotient!)

\(a \) and \(b \) are congruent \(\pmod{m} \) \((a \equiv b \pmod{m}) \) if both have the same remainder on
division by \(m \); that is, \(a - b \) is a multiple of \(m \) (notation: \(m \mid a - b \), \(m \) divides \(a - b \)).
The idea: a number is really the “same” as its remainder (the number line is “wrapped
around” a circle going from 0 to \(m - 1 \)).

Basic facts: if \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \) then \(a \equiv c \pmod{m} \) (i.e., all
three have the same remainder \(\pmod{m} \)). If \(a \equiv b \pmod{m} \) and \(c \equiv d \pmod{m} \), then
\(a + c \equiv b + d \pmod{m} \), \(a - c \equiv b - d \pmod{m} \), and \(a \cdot c \equiv b \cdot d \pmod{m} \) (the
remainder of the sum is the sum of the remainders, etc.).

In the language of modular arithmetic, some popular check digit systems:

A basic sum check system: digits \(a_1 a_2 \ldots a_k \), with \(a_k \) = check, chosen so that
\(a_1 + a_2 + \cdots + a_k \equiv 0 \pmod{10} \).

UPC: digits \(a_1 a_2 \ldots a_{11} a_{12} \), with \(a_{12} \) = check, chosen so that
\(3a_1 + a_2 + 3a_3 + \cdots + 3a_{11} + a_{12} \equiv 0 \pmod{10} \). [groceries]

ISBN-10: digits \(a_1 a_2 \ldots a_9 a_{10} \), with \(a_{10} \) = check = 0, \ldots, 9, \(X \) (\(X = 10 \)), chosen so that
\(10a_1 + 9a_2 + 8a_3 + \cdots + 2a_9 + a_{10} \equiv 0 \pmod{11} \). [books]

LUHN: digits \(a_1 a_2 \ldots a_{15} a_{16} \), with \(a_{16} \) = check, chosen so that
\(b_1 + a_2 + b_3 + \cdots + b_{15} + a_{16} \equiv 0 \pmod{10} \), where \(b_i = 2a_i \) if \(2a_i \leq 9 \), otherwise
\(b_i = 2a_i - 9 \). [credit cards]

mod 9 check: digits \(a_1 a_2 \ldots a_k \), with \(a_k \) = check = 0, \ldots, 8, chosen so that
the \(k \)-digit number \(a_1a_2\ldots a_k \equiv 0 \pmod 9 \). [euro notes, Visa traveler’s checks]

mod 7 check: digits \(a_1a_2\ldots a_k \), with \(a_k=\text{check} =0,\ldots,6 \), chosen so that the \(k \)-digit number \(a_1a_2\ldots a_k \equiv 0 \pmod 7 \). [UPS tracking, airline tickets]

mod \(m \) check: digits \(a_1a_2\ldots a_k \), with \(a_k=\text{check} =0,\ldots,m-1 \), chosen so that the \(k \)-digit number \(a_1a_2\ldots a_k \equiv 0 \pmod m \).

Finding the check digit: call the check digit \(x \) and compute the appropriate sum; typically we end up solving \(a+x = \text{multiple of} \ m \), by finding the remainder \(r \) of \(a \mod m \) and solving \(r+x = m \).

Finding a missing/obliterated digit amounts to giving the unknown digit a name, \(x \), and computing the sum; we end up solving \(cx+a = \text{multiple of} \ m \). Basic trick: find \(d \) (if we can!) so that \(dc \equiv 1 \pmod m \); then \(0 \equiv d(cx+a) \equiv (dc)x+(da) \equiv x+(da) \pmod m \), and solve as above! Or, by “brute force”: plug each number from 0 to \(m-1 \) in for \(x \) in \(cx+a \) to find all of the \(x \) which gives a multiple of \(m \). Finding the \(d \) in the first approach can be done the same way; compute all of the \(dc-1 \) for \(d = 0,\ldots,m-1 \) until you find one that is a multiple of \(m \).

For example, for UPC, can use \(d = 7 \): \(7 \cdot 3 = 21 \equiv 1 \pmod {10} \). For ISBN-10, every number 1,\ldots,10 has a corresponding number (e.g., to recover \(a_6 \) solve \(5a_6 + a = 0 \pmod {11} \), and \(9 \cdot 5 = 45 = 44 + 1 \equiv 1 \pmod {11} \), so \(a_6 + 9a \equiv 9 \cdot 5a_6 + 9a \equiv 0 \pmod {11} \)).

Being able to recover a missing digit means we can detect changes in that digit’s position: if there is only one answer, then any other answer would not yield something \(\equiv 0 \), unless we change the check digit! If more than one answer will work, then the system cannot detect the change of one answer to the other; the check digit remains the same (E.g., change 0 to 9 in the mod 9 system.)

We can test a system to see if it can detect transposition errors, by subtracting the two equations for the checks. For example, with UPC, transposing the first two digits cannot be detected if

\[
3a_1 + a_2 + 3a_3 + \cdots + 3a_{11} + a_{12} \equiv 0 \pmod {10}
\]

and \(3a_2 + a_1 + 3a_3 + \cdots + 3a_{11} + a_{12} \equiv 0 \pmod {10} \). Subtracting, we get \(2a_1 - 2a_2 \equiv 0 \pmod {10} \), which requires \(a_1 - a_2 = \text{multiple of 5} \). So, e.g., UPC cannot detect the transposition of a 2 and a 7...

Simplifying the computation of a mod 9 check digit: \(10 \equiv 1 \pmod 9 \), so \(100 = 10 \cdot 10 \equiv 1 \cdot 1 = 1 \pmod 9 \), and so on, so \(a_1a_2\ldots a_k = a_1 \cdot (10)^{k-1} + \cdots + a_{k-1} \cdot 10 + a_k \equiv a_1 + \cdots + a_k \).

Since we can always throw out multiples of 9 in these computations, we can throw out digits that add up to 9 (casting out 9’s).

Simplifying the computation of a mod 7 check digit: \(1 \equiv 1 \pmod 7 \), \(10 \equiv 3 \pmod 7 \), \(100 = 10 \cdot 10 \equiv 3 \cdot 3 = 9 \equiv 2 \pmod 7 \), \(1000 = 100 \cdot 10 \equiv 2 \cdot 3 = 6 \pmod 7 \), and so on [the pattern, we can work out, is \(1,3,2,6,4,5,1,3,2,6,4,5,\ldots \)], so \(a_1a_2\ldots a_k = a_1 \cdot (10)^{k-1} + \cdots + a_{k-1} \cdot 10 + a_k \equiv a_k + 3a_{k-1} + 2a_{k-2} + 6a_{k-3} + \cdots \pmod 7 \).

A similar list of numbers can be created for any modulus.