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Our text slightly misstates the meaning of critical time for an order requirement digraph by excluding

isolated tasks from the set of maximal paths.    Furthermore, the way it says to compute the critical time of

a project suffers from a problem called the combinatorial explosion.  What this means is that problems

can get too big, too fast, making them unmanageable.  This handout provides a different approach that

makes even large problems very manageable.

What do we mean by unmanageable?  The largest number of maximal paths that an order-requirement

digraph with  n  vertices can have is in the vicinity of .  If an order-requirement digraph has 30 vertices,

then it can have up to 59049 maximal paths!  Each path could contain 10 vertices, requiring 9 additions to

find the weight of the path, meaning we could be faced with 531,441 additions to find the critical time. 

On the other hand, if done efficiently, the critical time for a project with 30 tasks never requires more than

29 additions.  Which would you rather do?  (In real life, something like a major construction project can

have a hundred or more tasks.  Even a fast computer could be overwhelmed if it had to use the method

given in the book.)  To provide a more efficient approach, we start with the following definition of

forward critical time for each task:

Definition.  If we have a project with clearly defined order-requirements and task times, for any task in the

project, the task’s forward critical time is the minimum amount of time that can elapse between the start

of that task and the completion of the entire project.

If we have a weighted order-requirement digraph for the project, this definition is equivalent to saying the

task’s forward critical time is the largest weight we get for any path that starts with that task.  

Definition.  The critical time for the project is the largest forward critical time present among the tasks

within the project.

The nice thing here is that there is a simple, efficient procedure for finding tasks’ forward critical times:

For any task in a project, to find its forward critical time:

1. For any task which is a sink, including any isolated tasks, its forward critical time is just the
amount of time it takes to do that task.

2. For any task A which is at the start of one or more arcs, wait until you find the forward critical
time for each of the tasks at the ends of those arcs.  Then find the largest of those forward critical
times and add to that the time it takes to do task A to get the forward critical time for A.



Example:  In the following project with 12 tasks, find the forward critical time for each task, and the

critical time for the project.

We see that T6 , T10 , T11 and T12 are sinks, so their forward critical times (we’ll abbreviate this FCT) are 5,

8, 3 and 7 respectively.  Once we’ve found those, we can find the FCTs of  T7 , T8 and T9.  For T7, we need

to look at the FCTs of T10 and T11.  The larger time is 8 at T10 , so the FCT for T7 is 6+8, or 14.  For T8 ,

with arcs going to T10 , T11 and T12 , we compare the FCTs of all three.  The largest is again the 8 from T10 ,

so the FCT for T8 is 4+8 = 12.  From T9 , arcs go to T11 and T12 , and T12 has the larger FCT of 7, so the

FCT of  T9 is 9+7 = 16.  Now that we know those, we can find the FCTs of T4 and T5 .  For T4, the arcs

point to T7 and T8 , and the maximum FCT of those is 14, so the FCT of T4 is 14+9 = 23.  For T5 , the

maximum FCT at the vertices at the end of its arcs is the 16 at T9 , so the FCT at T5 is 8+16 = 24.  Finally,

we’re ready to find the FCTs of T1 , T2 and T3 .  All three of them have arcs ending at T5 where the FCT is

24, T1 and T2 also have arcs ending at T4 but T4's FCT is lower, so they all use the FCT at T5 plus their

own task time.  That means the FCT at T1 is 5+24 = 29, at T2 it’s 7+24 = 31, and at T3 the FCT is

3+24 = 27.  

Since the largest FCT for any task is 31 at T2 , the entire project has a critical time of 31 and a critical path

starting at T2.  

Following this approach, the only critical path for the project above is T2 6T5 6T9 6T12.

Incidentally, the above project has 32 maximal paths, requiring 93 additions using the book’s approach.

To find the critical path(s) once all the task FCTs are known:

1. Start at a task whose FCT is the critical time for the project.

2. If you’re at vertex  A which is not a sink, follow an arc that starts at  A  and ends at a vertex  B such
that  (FCT for B) = (FCT for A)!(Time required to do A).  Repeat this step until you reach a sink.

3. If you had multiple valid choices to make in steps 1 or 2, that means there are multiple critical
paths.  To find all critical paths, explore all choices that follow the above rules. 


	Page 1
	Page 2

