Tuw 6 December

Math 189H Joy of Numbers Activity Log
Tuesday, December 6, 2011

Paul Erdos: “A mathematician is a device for turning coffee into theorems.” [It was
suggested that ‘coffee’ should be replaced with ‘caffeine’.]

African proverb: “If you think you are too small to make a difference, try sleeping with a
mosquito in the room.”

Today started with two presentations. With a coin flip determining the order of presen-
tation, we first heard from Logan and Will on the Chinese Remainder Theorem, which
is a result first discovered in the 12th century B.C.E. for solving simultaneous systems of
congruence equations:

z = r; mod n
to
z = 1, mod nyg

The method discovered by Qin Jiushao was, setting N = ninsg - - - ng, to solve k equations
one at a time, and then combine their answers into a solution to the original problem.
His method will work if the moduli n; are all relatively prime to one another. Setting
x; = N/n;, if we solve x;9; = r; mod n; (which we can, since x; and n; are relatively
prime), then his solution was given by z = g1x1 + - - - + grxg, since every term in the sum
except g;x; is a multiple of n; so does not affect the remainder ot z on division by n;
(1). Logan and Will illustrated this solution with several examples motivated by eggs in a
basket and partgoers breaking into groups!

This was followed by Merideth and Chad discussing the Gregorian calendar, which was
introduced by Pope Gregory XIII in 1582 as a system for assigning dates that more accu-
rately fit with the solar year. (The previous Julian calendar fell a day ahead of the solar
year every 128 years, which over time had shifted dates by 10 days!) By reverse-engineering
the Gregorian calendar, we can build a formula (using modular arithmetic and our favorite
‘floor’ function) to compute the day of the week that any particular date fell or will fall
on (after 15827!). To make leap year easier to deal with, the formula numbers the month
m with March starting as 1, we then need the day of the month k, the century ¢, and the
year within the century (i.e., the year modulo 100) d. Then, with Sunday being 0 and
numbering forward, the day of the week can be computed as

k+ L%J +d+ L%J + LEJ — 2¢ modulo 7

Merideth and Chad illustrated this with several of our birth dates (which I will not repro-
duce here, both because I don’t remember them (other than my own) and to reduce the
risk of identity theft!).

After the presentations, we turned our attention to some further refinements of Euler’s
Theorem. We have learned that if p is prime, then for every a other than a multiple of p

we have a?~! =1 . [This result was discovered a bit before Euler’s more general result,
P

by Pierre de Fermat, and is usually known as ‘Fermat’s Little Theorem’.] But we have
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ourselves encounter composite numbers n having a’s with a” ! = 1, the first being n = 91

with @ = 2, and more spectacularly some Carmichael numbers.nThis result in the end is
also not really a test for primality so much as providing proof of non-primality; if a” =1 # 1
mod n but ged(a,n) = 1, then n cannot be prime. On the other hand, a Carmichael
number can never be proven composite using this test. We’d like to do better!

One way to improve things is built upon another observation we’ve made (or rather, you

made, on one of your exams?); if p is prime and a? =1, then it must be the case that either
P

a=1ora= —1 (just as with ordinary arithmetic!). But what happens if n is not prime?
p P

How many solutions to a? =1 can we have (with 1 < a < n)? Since as things stand to

answer this question for a particular n we would have to test every a from 1 to n, and that
sounded tedious, we once again let Maple 15 do the heavy lifting, and tested an assortment
of values for n. What we found was (this is simulated data, the Maple worksheet chose
6-digit numbers at random!)

for n = 496389 = 3 - 165463, there were 4 solutions,

for n = 157167 = 33 - 5821, there were 4 solutions,

for n = 105651 = 32 - 7-13 - 43, there were 16 solutions,

for n = 331362 = 2 - 32 - 41 - 449, there were 8 solutions,

for n = 593086 = 2 - 13 - 22811, there were 4 solutions,

for n = 514121 = 19 - 27059, there were 4 solutions,

for n = 802175 = 52 - 11 - 2917, there were 8 solutions, and
for n = 836304 =2%-3-7-19 - 131, there were 64 solutions!

Based on this (somewhat limited) evidence, we decided that even numbers behaved weirdly
[but on the other hand, the only numbers we would ever be testing for primality would be
odd ones!]. For the odd numbers, we definitely detected a pattern; the number of a with
square congruent to 1 modulo n appears to be 2 raised to the number of distinct prime
factors of n. We can in fact, borrowing the work of Logan and Will, see why this might
be so; dissecting a particular (small) example, n = 187 = 11 - 17, the numbers squaring to
1 are 1,67,120, and 186 = —1. 1 and —1 are no surprise, perhaps, but what is so special
about 67 and 1207 Looked at through the lens of the factors of 187, we noted something;:
67 is =1 mod 11, and is = —1 mod 17, while 120 is = —1 mod 11 and = 1 mod 17. So the
solutions to a® = 1 mod 11 - 17 turn out to be the solutions to the system(s) of equations
a = =41 mod 11

a = 41 mod 17

for each of the 4 = 22 possible choices of pairs of signs . This holds more generally; if
n = plfl .- pkr (is odd!), then using Logan and Will’s technique to solve the system a = £1
mod pfi for any choice of signs =+, then that solution will automatically satisfy a? = 1 mod
pfi for every i, so pfi|a2 —1,s0n = plfl .--pkria? — 1 (since the prime powers are all

relatively prime to one another!), so > = 1 mod n. This gives our 2" solutions to a? =
n

(1). [Tuesday’s class essentially ended here.]

The point we need to take away from this is that there are more solutions to a? =1

n
when n is (odd and) composite than when n is prime. This fact was turned into a better
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(non-)primality test than Euler’s Theorem turns out to be, by Miller and Rabin, in the
mid-1970’s. [Yes, we have gotten that close to research-level mathematics!] Their idea was

n—1 —

to use the fact that passing the Euler Theorem ‘test’, a =1, provided a further test,

n
since (if n is odd [otherwise why are you testing for primality?!] then) n — 1 = 2k is even,

we have a" 1 = a?* = (a¥)?, so, if n is prime, it must be the case that a* =1 or a* = —

n n

This is a further test! But even more, if a* =1 and k = 2¢ is still even, then it must be
n

that a®=1 or a®*¢= —1 (if n is prime). This really creates a series of tests for the primality
n n

of n, so long as we can extract further factors of 2 from n — 1. In its most streamlined
form, the Miller-Rabin Primality Test says:

If n is prime, and n — 1 = 2¥m with m odd, then looking at the sequence of numbers

2 k . . .
a™, a*m a?>™, .. .a> ™ = a""!, mod n, either a™ =1 or one of the terms is = — 1 (and is

n n
then followed by at least one 1(!)). Turning this around, if the last term in the sequence

is not =1, or the term that immediately precedes the first term that is 1 is not = — 1,
n n

then n cannot be prime.

But Miller and Rabin went one step further. If a number n ‘passes’ the Miller-Rabin test
for some base a (meaning the test makes it look like it is prime), we will call n a strong
pseudoprime to the base a. What they also showed that if n is not prime, then it can be a
strong pseudoprime to at most 1/4th of the bases relatively prime to n. That means that
roughly 3/4ths of the a’s between 1 and n must be witnesses to the non-primality of n.
Which are pretty good odds!

Every ‘practical’ primality test you are likely to encounter (for example, the one built into
Maple 15) uses this property of the Miller-Rabin test. It more or less randomly chooses
some number s of bases a; (s=1007 10007), incidentlly checks that each is relatively
prime to n (otherwise it has accidentally stumbled across a factor, which is a really good
witness to the non-primality of n), then, starting with n —1 = 2¥m with m odd, computes
a™, (a™)?, (a™)4,. .. (am)zk = a"! in turn, mod n. If this sequence starts with 1, it stops
and moves on the to the next base a. Otherwise, if it encounters a 1 without first meeting a
—1, it stops and declares n to be composite with a as a ‘witness’. And if it never encounters
a 1, then "~ ! # 1 mod n, so again it is composite with a as a witness. And if it makes it
all the way to the end and meets a 1, it moves on to the next base. If it gets all of the way
through its choice of bases without ever meeting a witness, it declares n to be an ‘industrial
grade’ prime (as most people term them); by Miller-Rabin, the odds that n is not prime
are likely on the order of 47% ~ 107%%, which for a large value of s is a very small number!
If, for example, it is smaller than 1/n, then we are essentially saying that there is probably
only one composite number the same size as the number we are working with that would
have been mistakenly identified as not composite. And since all of this machinery is relying
on (fast) exponentiation, we can crank out very-highly-probably primes in the numbers
(no pun intended) that modern commerce really requires.
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