
Tu 29 November

Math 189H Joy of Numbers Activity Log

Tuesday, November 29, 2011

Ralph Abraham: “My specific goal is to revolutionize the future of the species. Mathematics

is just another way of predicting the future.”

Franklin D. Roosevelt: “If you treat people right they will treat you right - ninety percent

of the time.”

Perrin’s function: P (0 = 3, P (1) = 0, P (2) = 2, and P (n) = P (n − 2) + P (n − 3). If n

is prime than n|P (n). The opposite statement is false; there are composite n for which
n|P (n). But the first instance of this failure is for n = 271, 411. P (271, 411) has 33,150
digits.

Today we started with some questions related to our (last!) exam, and worked some
examples similar to some of the questions on the exam; an example of using brute force
factoring and the Euclidean algorithm to recover someone’s private decryption exponent
from their public modulus and encryption exponent, and two examples of computing the
order of a number a modulo n, by computing φ(n) and and ak mod n for every number
dividing φ(n) (starting from the smallest).

Then we introduced another public key cryptosystem that is based on modular exponenti-
ation. This one works a little differently; by passing information to one another in public,
Alice and Bob can ‘agree’ on a secret key that they can use for further communications.
The process is called the Diffie-Hellman Key Exchange system [although, again, Wikipedia
reports that the basic idea had been discovered a few years before it was publicly known
(in 1976) by a British analyst, Malcolm Williamson]. The basic setup is:

Alice and Bob agree on a choice of (large!) prime p and a number a relatively prime to
p. [With what we will do with it, it may as well be less than p, too.] Alice and Bob each,
privately, choose numbers kA and kB to use as exponents. They then each compute ak

mod p for their chosen exponent, creating numbers nA ≡
p

akA and nB ≡
p

akB . They then

(publicly!) report the numbers nA, nB to one another.

At this point Alice now knows nB and her own kA, and Bob knows nA and his own kB.
If effect, Alice knows akB (mod p) without knowing kB, and Bob knows akA (mod p),
without knowing kA (!). This allows Alice and Bob to compute the same number (which
will be their secret):

nkB

A ≡
p

(akA)kB = akAkB ≡
p

z ≡
p

akBkA = (akB )kA ≡
p

nkA

B

Bob can compute the number on the left, and Alice can compute the one on the right;
and they are both equal to one another, mod p. They can then use the number z (or
rather, to hide all of the computations, its remainder on division by p) as a ‘multiplier’ to
encypt messages: to encrypt the message m, what they send is mz mod p. To decrypt the
message, the recipient needs to ‘divide by z’, that is, multiply by the inverse of z (mod p).
This they can do, because they know z and p; the Euclidean Algorithm will allow them to
find x and y with zx + py = 1, giving us the inverse, x.

lxxiii



Tu 29 November

The key (no pun intended) to the security of this cryptosystem is that in order to compute
z, Alice used her private exponent kA, and Bob used his private exponent kB . On the
other hand, the only information that an eavesdropper is in possession of is p, a, nA, and
nB. This means that Eve knows both akA and akB (mod p) without knowing either kA

or kB. The question is, is this enough information for Eve to construct the shared secret
z ≡

p
akAkB ? This is known as the Diffie-Hellman Problem:

Knowing a, ak, and a` (all mod p), what is the fastest way to compute ak` (mod p) ?

The prevailing conclusion among researchers working on this appears to be that the fastest
way is to recover either k or ` (so that, basically, you can do exactly what Alice and Bob do
to compute ak`). Focusing on one of them for concreteness, recovering k from knowledge
of a and ak we recognized as something we could do for ‘ordinary’ numbers; it can be
done by taking a logarithm: k = loga(ak) . But these aren’t ordinary numbers! We are
working modulo a prime, p. And fun things happen when you raise a to powers, mod p;
it can be difficult (we think!) to determine what exponent got you to the result, because
of the ‘wrap-around’ effect of taking remainders modulo p. For example (to recycle some
of the computations we did at the start of class!) we saw that the order of (hm, what
were the numbers? These numbers won’t be what we used...) 2 modulo 13 is 12, so 12 is
the smallest positive k so that 2k ≡ 1 mod 13. This actually means (using the pigeonhole
principle) that every number from 1 to 12 is a power of 2, mod 13, so for example 7 = 2k

mod 13 for some k. Finding that k, other than by brute force (there are only 12 exponents
to try...), requires some very deep thought. Or you can try 5k ≡ 6 mod 97 for some k;
which one? The point really is that for our cryptosystem we are going to be using big
numbers for our prime p and hidden exponents kA, kB, to make a brute force attack (to
recover kA from a and akA ; try all possible exponents until you get something congruent
to akA (!)) impractical.

The problem of recovering k from a and ak modulo p is known as the discrete logarithm

problem. As it turns out, the best currently known methods for recovering k run in roughly
the same time as the best known factoring algorithm (GNFS); so Diffie-Hellman currently
has the same level of security as RSA, using moduli of the same size. Diffie-Hellman is in
fact used more often for protecting your communications and transactions than RSA is,
partly because it is so easy to modify on the fly. Once two people agree on a prime modulus
p and a base a, they can change their shared secret by simply choosing different exponents
and exchanging the computations akA , akB with one another; building their new secret
multiplier from this is a matter of fast exponentiation, and then the Euclidean Algorithm
(which is also fast...) gives the decryption multiplier. In this way they could protect every
communication using a different shared key; anybody capable of recovering one of their
kA from akA (after a few thousand years? or by tying up a few thousand computers for a
year?) will be able to read one message...

lxxiv


