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Math 189H Joy of Numbers Activity Log

Tuesday, November 1, 2011

Werner Heisenberg: “An expert is someone who knows some of the worst mistakes that
can be made in his/her subject, and how to avoid them.”

Isaac Newton was a member of the British parliament. In all of their official records, he is
recorded as speaking in chambers exactly once, to ask that a window be closed.

n = 4, 700, 063, 497 is the smallest number so that 2n ≡
n

3.

Class started with a question about induction, so we illustrated the ideas that go into an
inductive proof with a specific example. Picking all (but one!) of the numbers at random,
we looked at the sequence of integers an = 11 ·12n+18 ·41n. For n = 0, this is 29; for n = 1
it is 11 · 12 + 18 · 41 = 870 = 29 · 30. In fact, every an is a multiple of 29, something that
we can prove by induction! Either of the two computations above can serve as our base
case, and to establish the result by induction, we also need to prove the inductive step:
if 29|an (and n ≥ 1) then it follows that 29|an+1. The whole idea is that from the base
case a1, the inductive step assures us that 29|a2, and then the inductive step again shows
that 29|a3, which implies 29|a4, and there is nothing to stop this process from continuing;
the inductive step always allows us to move to the next number in sequence and know
that it is a multiple of 29. This means, though, that the only thing we are allowed to
use, in showing that 29|an+1 is that (n ≥ 1: we are only looking to the ‘right’ of 1, and)
29|an. So we suppose that an = 11 · 12n + 18 · 41n = 29K for some integer K, and look
at an+1 = 11 · 12n+1 + 18 · 41n+1. A very useful principle for inductive arguments is to
‘look for’ the thing that the inductive hypothesis tells you that you know something about
‘inside’ of the thing that you are trying to understand; in this case 11 · 12n+1 + 18 · 41n+1

‘contains’ both 11 · 12n (inside of 11 · 12n+1 = (11 · 12n) · 12) and 18 · 41n (inside of
18 · 41n+1 = (18 · 41n) · 41), but it contains different multiples of each! But in any event,
it contains 12 of each of them, and considering what we are after (to show that something
is a multiple of 29), we can, as we have before, set aside things we know are multiples of
29 in order to deal with what is left over. So we can write

an+1 = 11 · 12n+1 + 18 · 41n+1 = (11 · 12n) · 12 + (18 · 41n) · 41
= (11 ·12n) ·12+(18 ·41n) ·12+(18 ·41n) ·(41−12) = (11 ·12n+18 ·41n) ·12+(18 ·41n) ·(29)
= 12an + 29 · (18 · 41n)

But since an = 29K, this means that an+1 = 12(29K)+29·(18·41n) = 29(12K+18·41n) is
also a multiple of 29 (!). This establishes our inductive hypothesis, finishing the argument.
So an is always a multiple of 29.

We can craft many statements like this, that we could then prove by induction. Looking at
the argument we built, what appeared to be important was that 41− 12 = 29, so what we
split off from the piece we knew something about was a multiple of 29, so would not change
what we were congruent to modulo 29. By a parallel kind of reasoning, for example, we
could show that bn = 11 · 12n + 17 · 41n is never a multiple of 29, since we could show, as
before, that bn+1 = 12bn + 29(17 · 41n), but now we would start with b0 = 11 + 17 = 28,
which is not a multiple of 29; in fact, it is relatively prime to 29, as is 12, and so 12bn
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would actually be relatively prime to 29 (by our inductive hypothesis); adding a multiple
of 29 won’t change that, so bn+1 is also relatively prime to 29, and so isn’t a multiple of
29, either! This established the inductive step: 29 6 |bn implies 29 6 |bn+1. [What we really
established was that gcd(bn, 29) = 1 implies that gcd(bn+1, 29) = 1, which, since 29 is
prime, really amounts to the same thing!]

After this discussion, we returned to our discussion about ‘fast exponentiation’, as a way
to speed up our ‘compositivity test’: If gcd(a, n) = 1 and an−1 6≡ 1 (mod n), then n cannot
be prime. We saw last time that to compute ak mod n more quickly, we could adopt a
strategy of repeatedly dividing the exponent by 2 (with remainder 0 or 1); keeing track of
the remainders and running the process backwards allows us to carry out exponentiation
much more quickly. Looking at another example for inspiration, we found that

373 = 2 · 186 +1 , 186 = 2 · 93 +0 , 93 = 2 · 46+ 1 , 46 = 2 · 23 +0 ,
23 = 2 · 11 + 1 , 11 = 2 · 5 + 1 , 5 = 2 · 2 + 1 , 2 = 2 · 1 + 0

This should feel kind of like the Euclidean algorithm?, except that the divisor never
changes! Reassembling this from the bottom up, kind of as we did with the Euclidean
algorithm, we find that

2 = 2 · 1 + 0, so
5 = 2 · (2 · 1 + 0) + 1, so
11 = 2 · (2 · (2 · 1 + 0) + 1) + 1, so
23 = 2 · (2 · (2 · (2 · 1 + 0) + 1) + 1) + 1
46 = 2 · (2 · (2 · (2 · (2 · 1 + 0) + 1) + 1) + 1) + 0
93 = 2 · (2 · (2 · (2 · (2 · (2 · 1 + 0) + 1) + 1) + 1) + 0) + 1
186 = 2 · (2 · (2 · (2 · (2 · (2 · (2 · 1 + 0) + 1) + 1) + 1) + 0) + 1) + 0
373 = 2 · (2 · (2 · (2 · (2 · (2 · (2 · (2 · 1 + 0) + 1) + 1) + 1) + 0) + 1) + 0) + 1

If you multiply this out without multiplying it out (that is, distribute all of the multiplca-
tions across the sums), what you find is that this says that

373 = 1+0 ·2+1 ·22+0 ·23 +1 ·24 +1 ·25 +1 ·26 +0 ·27 +1 ·28 = 28 +26 +25 +24 +22 +20

(essentially, we are reading the remainders from right to left, pairing them with ever higher
powers of 2. Or if you prefer, reading them from left to right, pairing them with ever lower
powers of 2! [But then you need to figure out where to start...]). This is basically the
binary representation of 373, writing it in base 2: 373 = 1011101012.

A different way to look at this is to think of writing 373 (to think in terms of a specific
example) as a sum of distinct powers of 2; there is, in fact, only one way to do this. The
process of division by 2 with remainders that we discovered is one way to do this. Note
that, in essence, that process find the smallest power of two we need first; 373 = 2 · 186+1
means we start with 20 = 1, and then use the quotient, 186, to identify the next power of
two (186 = 2 · 93 + 0 says that it won’t be 21 (the 0 says skip that one), 93 = 2 · 46 + 1
says that the next one is in fact 22)

Another way to reach the same answer is to work down from above; the largest power of 2
less than (or equal to) 373 is 256 = 28, so 373 = 28 +(373−256) = 28 +117. By continuing
to remove the largest power of 2 that we can, we can revover the base 2 representation:
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373 = 28+117 = 28+26+(117−64) = 28+26+53 = 28+26+25+21 = 28+26+25+24+5 =
28 + 26 + 25 + 24 + 22 + 1 = 28 + 26 + 25 + 24 + 22 + 20 = 1011101012

[This representation is unique because of you skip a power of 2 that you could subtract
off, the rest of the powers of 2 will never let you catch up: 1+ 2+22 + · · ·+2n = 2n+1 − 1
[which we can show by induction!], so all of them together can never add up to the number
you are trying to represent.] We also demonstrated this with another, somewhat larger
number, like 3059? [I could no longer remember the exact number]:

3059 = 2048 + 1011 = 2048 + 512 + 499 = 2048 + 512 + 256 + 243
= 2048 + 512 + 256 + 128 + 115 = 2048 + 512 + 256 + 128 + 64 + 51
= 2048 + 512 + 256 + 128 + 64 + 32 + 19 = 2048 + 512 + 256 + 128 + 64 + 32 + 16 + 3
= 2048 + 512 + 256 + 128 + 64 + 32 + 16 + 2 + 1
= 211 + 29 + 28 + 27 + 26 + 25 + 24 + 21 + 20 = 1011111100112

The point to all of this, though, was to do exponentiation quickly! The basic idea is that
if squaring a number, mod n, is our basic operation, then we can compute a1 = a mod n,
a2 = a2 mod n, a3 = a4 mod n, . . . , ar = a2

r

mod n in r steps by repeated squaring,
since a2

i+1

= a2
i
·2 = (a2

i

)2. If we then know how to write k as a sum of powers of 2
(using either of the procedures above), we can then write ak mod n as the product, mod
n, of the corresponding numbers ai, since ap+q = apaq; exponentiation turns sums in to
products. For a number k of any size, we can estimate how much work this will involve;
if 2N ≤ k < 2N+1, then the base 2 representation of k will have N + 1 digits, so we will
need N squarings to build the numbers ai, and then, at worst, we will need to multiply
all of them together to compute ak mod n, which is another N multiplications. So all
together, we will need at most 2N = 2 log2(k) multiplications modulo n to compute ak

mod n. Which is a lot smaller than the k − 1 multiplications that repeated multiplication
by a would require!

Our process of division by 2 with remainders can also be used to compute ak mod n with
essentially the same amount of work; at each step we either square the result of the previous
step or square and then multiply by a, depending on whether the remainder is 0 or 1. To
compute a373, for example, we compute a, a2, a5, a11, a23, a46, a93, a186, and a373 in turn,
where each odd exponent encountered signifies that an additional a was multiplied to the
square of the previous step.

This fact, that computing powers mod n is ‘fast’, enables us to have a fast way to determine
that very large numbers are not prime, using Euler’s Theorem. It is actually true that it
can also be used as a fast way to show that numbers (of certain special forms, like 2k + 1
or 2k −1) are prime; this is something that I hope we will have the time to explore shortly!
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