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Bertrand Russell: “In all affairs it’s a healthy thing now and then to hang a question mark
on the things you have long taken for granted.”

Winston Churchill: “Success is the ability to go from one failure to another with no loss
of enthusiasm.”

Today we returned to our old conjecture: If p is prime and relatively prime to 10, then
10p−1≡

p
1. (I.e., p|10p−1−1 .) [If n is not relatively prime to 10, then usually n 6 |10n−1−1

.] With our recent discoveries, this looked more like it was within reach now!

Before starting on the road to showing this, we looked at some tables of powers modulo
n for n from 2 to 21, to see if there was even more we could expect to be true. What we
noticed first was that for all of the prime moduli n in the table, there was nothing really
special about 10 at all; for every number a from 1 to n− 1 we saw that an−1 ≡

n
1 (if n was

prime).

If n was not prime, then this turned out not to be true; in fact, rarely (never?) was an−1≡
n

1

for any a (except a = 1 (!)). But we were able to spot still more patterns: If we looked for
1’s in the table (meaning pairs of moduli n and exponents k so that so that ak ≡

n
1 holds

for more a’s than usual), we found that, for example,

for n = 14, a6 ≡
n

1 for a = 1, 3, 5, 9, 11, 13

for n = 15, a4 ≡
n

1 for a = 1, 2, 4, 7, 8, 11, 13, 14

for n = 16, a4 ≡
n

1 for a = 1, 3, 5, 7, 9, 11, 13, 15

for n = 18, a6 ≡
n

1 for a = 1, 5, 7, 11, 13, 17

In trying to find a pattern to these collections of numbers, we eventually took our lead
from the list for n = 16: it consists of all of the odd numbers. In other words, it consist
of all of the number except the even ones! Looking at the other lists, paying attention to
what is missing, we found that

for n = 14, the missing numbers are 0, 2, 4, 6, 7, 8, 10, 12
for n = 15, the missing numbers are 0, 3, 5, 6, 9, 10, 12
for n = 16, the missing numbers are 0, 2, 4, 6, 8, 10, 12, 14
for n = 18, the missing numbers are 0, 2, 3, 6, 8, 9, 10, 12, 14, 15, 16

In these lists we could see that every number shares a factor in common with the modulus
n. Looking closer, the previous lists (with powers congruent to 1) each consist of precisely
the numbers which are relatively prime to the modulus. But when we are dealing with a
prime p, the numbers from 1 to p− 1 (whose p− 1st powers are, we think congruent to 1)
also consists of precisely the numbers relatively prime to p. So the overall pattern appears
to be: for every modulus n, there is an exponent k so that, for every number a relatively
prime to n, we have ak ≡

n
1 . Further, if n is prime, then that exponent can be chosen to

be n − 1. [We don’t yet know what the exponent might be for non-prime n.]
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To prove this, we can break it down into, it seems, three pieces. First, if gcd(n, a) = 1,
then ak ≡

n
1 for some exponent k > 0. Second, for all of the numbers relatively prime to n,

there is a single exponent k that works for all of them. Finally, for n prime, the exponent
n − 1 will, in fact, always work.

To show the first part, we can think of taking a single number a, and look at the string of
powers 1 = a0, a = a1, a2, a3, . . . , looking at their remainders modulo n, giving us a string
of numbers 1 = a0, a = a1, a2, a3, . . . all lying between 0 and n−1. The thing is, that since
the list runs on forever, we realized that it must eventually start to repeat itself. A formal
statement of this goes by the name of the Pigeonhole Principle: If you are given n buckets,
and told to put n things into them, without ever putting two things into the same bucket,
then you will have to put exactly one thing into each bucket. In particular, every bucket
will have something in it. The same idea says that if somebody gives you more than n

things and n buckets to put them in, you will have to put more than one thing into at least
one of the buckets. [This can be proved (by induction!) from the original statement of the
principle.] If we think of ’have the same remainder on division by n’ (i.e., are congruent
to one another modulo n) as our buckets, then since there are only n possible values for
the remainder, we have n buckets. Since we can keep taking higher powers all we want,
we could conclude that among the powers 1 = a0, a = a1, a2, . . . an, two of them must land
in the same bucket, i.e., ak ≡

n
ak+i for some k and k + i between 0 and n (with i > 0).

An important observation made at this point was that for the numbers we are looking at,
with a relatively prime to n, one of the buckets that cannot have an ak in it is the one
labeled 0; if n|ak = a(ak−1), then since gcd(n, a) = 1, we must have n|ak−1. But so long
as we have a positive number of a’s we can keep peeling another one off, yielding, in the
end n|a, which is absurd (since then gcd(n, a) = n). So in our argument above we actually
can pretend that we have n−1 buckets, not n. This will be a very useful observation later
on!

But at this point what we know is that ak and ak+i have the same remainder on division
by n, meaning that n|ak+i − ak. But how does this help us find a power of a congruent
to 1 modulo n? We can take a clue from that previous observation! ak+i − ak has factors
of a in it: ak+i − ak = ak(ai − 1). By the same reasoning as our previous observation,
since n|ak(ai − 1) and gcd(n, a) = 1, we can peel off each of the factors of a one by one,
using our result that dividing a product but being relatively prime to one factor implies
that you must divide the other factor. This leaves us, in the end, with n|ai − 1, which is
precisely what our first part asserts! [Note that this also implies that the first time that
our list of powers repeats itself, it is when a 1 appears for the second time (after a0).]

With the first part in hand, we turned to the second part. If we list every number between
1 and n − 1 that is relatively prime to n, as a1, . . . , ar, then we now know that each one
of them has an exponent ki so that aki

i ≡
n

1. How then do we show that there is a single

exponent that works for all of them? Our clue came from wondering what other powers
of a1, say, we could guarantee are congruent to 1. Since we had previously shown that
if a ≡

n
b then ak ≡

n
bk, and 1k = 1 for any k, we quickly realized that if ak1

1 ≡
n

1, then
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(ak1

1 )2 = a
2k1

1 ≡
n

12 = 1, and, even more, that a
k1s
1 ≡

n
1 for any positive integer s. So, for

example, ak1k2

1 ≡
n

1 and ak2k1

2 = ak1k2

2 ≡
n

1, as well. From there it was a short walk to the

realization that if we set k = k1 · · ·kr, then ak
i ≡

n
1 for every single integer ai, i.e., for every

integer between 0 and n that is relatively prime to n. This gives us our second part; there
is positive integer k so that, whenver gcd(n, a) = 1, then ak ≡

n
1.

But our arguments above give us no clue how to determine what this integer k is (other
than by following the prescription above, finding each ki in turn) In particular, we will
(eventually) be interested in knowing what the smallest k is that works for every a relatively
prime to n (or, at least, how to identify a small(ish) k...). This we will take up next time!
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