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Hugo Rossi: “In the fall of 1972 President Nixon announced that the rate of increase of

inflation was decreasing. This was the first time a sitting president used the third derivative

to advance his case for re-election.”

Thomas Edison: “I have not failed. I’ve just found 10,000 ways that won’t work.”

The only Fibonacci numbers that are perfect squares are 1 and 144.

We started by looking for some more patterns that we could try to prove using induction.
Picking some numbers more or less at random (and then shrinking a few once we realized
that Maple 15 wasn’t going to fare very well at factoring the resulting numbers), we looked
at the numbers An = 27 · 3n + 59 · 7n and their factorizations (courtesy of Maple):

n = 1, An = 494 = 2 · 13 · 19
n = 2, An = 3134 = 2 · 1567
n = 3, An = 20966 = 2 · 11 · 953
n = 4, An = 143846 = 2 · 71 · 1013
n = 5, An = 998174 = 2 · 389 · 1283
n = 6, An = 6960974 = 2 · 3480487
n = 7, An = 48648086 = 2 · 12959 · 1877
n = 8, An = 340300406 = 2 · 911 · 186773
n = 9, An = 2381394254 = 2 · 223 · 1063 · 5023
n = 10, An = 16667634014 = 2 · 193 · 1999 · 21601
n = 11, An = 116667060806 = 2 · 58333530403
n = 12, An = 816650293766 = 2 · 15998321 · 25523
n = 13, An = 5716494660734 = 2 · 11 · 13 · 787 · 7793 · 3259
n = 14, An = 40015290438254 = 2 · 20007645219127
n = 15, An = 280106516507126 = 2 · 23 · 53 · 269 · 427107533
n = 16, An = 1960744065867926 = 2 · 980372032933963
n = 17, An = 13725203812029614 = 2 · 6862601906014807
n = 18, An = 96076412737069694 = 2 · 71 · 173 · 118337941 · 33049
n = 19, An = 672534847318075046 = 2 · 19 · 139 · 199 · 273314017 · 2341
n = 20, An = 4707743805702286886 = 2 · 5449 · 8093 · 135431 · 394129
n = 21, An = 32954206263343292894 = 2 · 43 · 251 · 1526647190926679
n = 22, An = 230679442713684904334 = 2 · 1505131361418257 · 76631
n = 23, An = 1614756095606639892566 = 2 · 11 · 1117231681 · 65696314913
n = 24, An = 11303292659079015934646 = 2 · 5651646329539507967323
n = 25, An = 79123048583050721602574 = 2 · 13 · 409 · 7440572558120248411
n = 26, An = 553861339989847881398174 = 2 · 773 · 7182910580359 · 49875941
n = 27, An = 3877029379654413660327686 = 2 · 1309921398437571133 · 1479871
n = 28, An = 27139205656757331093915206 = 2 · 13697937829 · 990631071463207
n = 29, An = 189974439594830624072270654 = 2 · 34492586951327683 · 74717 · 36857
n = 30, An = 1329821077156402287750487214 = 2 · 67 · 577 · 17199372425003262988573
n = 31, An = 9308747540072579771987188406 = 2 · 6033691043 · 771397431003046121
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n = 32, An = 65161232780441349677111652566 = 2 · 71 · 458881920989023589275434173

n = 33, An = 2 · 11 · 151 · 317 · 433140149185042382168191

n = 34, An = 2 · 1620559043 · 493301519231830537 · 1997

n = 35, An = 2 · 10731479850383386151824141 · 1041343

n = 36, An = 2 · 1201 · 65134104873323733301463529763

n = 37, An = 2 · 13 · 192 · 232 · 19682785284732653 · 281923 · 39749

n = 38, An = 2 · 1123081435010298074994071750219 · 3413

n = 39, An = 2 · 137 · 16565912325343 · 11822508933100111853

n = 40, An = 2 · 78487576241879017846993745873651 · 2393

n = 41, An = 2 · 919 · 5854799464934757272349101263 · 244351

n = 42, An = 2 · 43 · 617223422227463 · 346759879055344599563

n = 43, An = 2 · 11 · 229 · 281 · 15884941 · 69032761766027090861 · 82997

n = 44, An = 2 · 1619 · 1663 · 150799577 · 1110699446167970961936967

n = 45, An = 2 · 131927613379 · 154318580600649732647 · 155052899

Looking at the prime factors, we could recognize several patterns. First, we noted that
every one is even! But we realized that this follows from the fact that our An’s are the sum
of two odd numbers, since the product of a bunch of odd numbers is odd (which we could
establish for an arbirarily long product, by induction!). Other patterns that we found were
that it appears that:

13|An for n = 13, 25, 37, which we conjectured meant whenever n = 12k + 1, i.e., n ≡ 1
mod 12.

11|An for n = 3, 13, 23, 33, 43, which we conjectured meant whenever n = 10k + 3, i.e.,
n ≡ 3 mod 10.

71|An for n = 18, 32, and (we checked!) 46 and 60, which we conjectured meant whenever
n ≡ 4 mod 14.

and still more could be extracted from the list, if we kept looking. [Look, for example,
for multiples of 43, or note what is missing: 37, for example, never appears as a factor.]
We then verified one of these by induction! To show that 13|An when n ≡ 1 mod 12, for
example, what we want to show is that 27 · 312k+1 + 59 · 712k+1 is always a multiple of
13, for any k ≥ 0 (or wherever we decide to start...). The list above establishes the base
case k = 0, and to show the inductive case, we can, in fact, adopt a reductio ad absurdum
approach, by showing that 27 ·312(k+1)+1 +59 ·712(k+1)+1 and 27 ·312k+1 +59 ·712k+1 leave
the exact same remainder on division by 13. [The idea here is that we are showing that if
27 ·312k+1 +59 ·712k+1 is not a multiple of 13, then the same is true for some smaller value
of k...] But saying that the two numbers have the same remainder is the same as saying
that their difference is a multiple of 13. Actually, even more is true:

27 · 3n+12 + 59 · 7n+12 ≡ 27 · 3n + 59 · 7n mod 13, for all values of n .

(We came across this insight by asking Maple to list the values of An mod 13 for a large
range of n, and noticing that the pattern of remainders repeated itself.) This fact we could
demonstrate by showing that

(27 · 3n+12 + 59 · 7n+12) − (27 · 3n + 59 · 7n) = 27 · 3n(312 − 1) + 59 · 7n(712 − 1)
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and realizing that this number is a multiple of 13 provided 312 − 1 and 712 − 1 are both
multiples of 13. Which, we found by asking a calculator, they are! This actually proved
even more, once we looked closer: since An and An+12 are congruent, modulo 13, we can
repeatedly subtract 12 from the subscript without changing whether or not the number is
a multiple of 13, allowing us, in a reductio ad absurdum kind of way, to determine precisely
which numbers An are a muliple of 13 by looking only at A1 through A12. Since only A1

is a multiple of 13, the multiples of 13 are precisely the numbers A12k+1 (!). In fact, this
line of reasoning confirms our experimental observation that the remainders, on division
by 13, of the An repeat themselves every 12 times. A similar liine of reasoning (using the
fact that 310 ≡ 1 and 710 ≡ 1 mod 11) will establish that 11|An precisely when n ≡ 3 mod
10, as our observations had indicated.

The facts that we used in these proofs - that 312 ≡ 1 and 712 ≡ 1 mod 13, and 310 ≡ 1
and 710 ≡ 1 mod 11 - sounded strangely familiar to our ears. These are the same kinds of
observations we were using in finding tests for divisibility by 13 and 11. It wold appear that
our conjecture, that if p is a prime not dividing 10 then 10p−1 ≡ 1 mod p, might hold in even
greater generality! and in fact, maybe the remainders, on division by p, of higher and higher
powers always cycle around? We tested this by randomly trying Bn = 18 · 22n + 11 · 7n,
looking at these numbers modulo 149; to the limits of our observations (to around n = 600)
it did appear to repeat itself every 148 values!

Before we can make a stab at verifying this kind of pattern, we need to back up (again)
to develop some more useful tools. Induction proved to be the needed tool to show that
every integer n ≥ 2 can be expressed as a product of primes. One thing we didn’t address
at that time (probably because we are used to thinking that it is true!) is: can a number
be written as a product of primes in more than one way? After thinking about it, we
concluded that the answer is ‘yes’, at least in a minor way: if it is the product of more
than one prime, we can write the prime factors in a different order. But we couldn’t see
any other way that might work, and ended up conjecturing that, except for the order in
which we write them, the factors of two different prime factorizations of the same number
n should all be the same. One way to impose a ‘canonical’ order on factors is to list
them in increasing order (which (look at our list above, cut directly out of Maple) Maple
apparently does not do!). This led us to conjecsture:

If N = p1 · · · pn and N = q1 · · · qm with p1 ≤ p2 ≤ . . . ≤ pn and q1 ≤ q2 ≤ . . . ≤ qm, and
all pi, qj prime, then n = m and pi = qi for every i .

The question is, how to prove this?! The answer which immediately occured to us was ‘By
induction!’, and in the course of thinking about it we decided that if we could show that
p1 = q1, then we could remove them from each list, ending up with prime factorizations
of a smaller number M = N/p1; then an inductive argument would allow us to conclude
that the remaining prime factors are all the same! We will pursue this line of reasoning
next time.
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