Math 1710
Topics for first exam

Chapter 1: Limits and Continuity

§1: Rates of change and limits

Calculus = Precalculus + (limits)

Limit of a function \(f \) at a point \(x_0 = \) the value the function ‘should’ take at the point
= the value that the points ‘near’ \(x_0 \) tell you \(f \) should have at \(x_0 \)

\[\lim_{x \to x_0} f(x) = L \] means \(f(x) \) is close to \(L \) when \(x \) is close to (but not \underline{equal} to) \(x_0 \)

Idea: slopes of tangent lines

\[\lim_{x \to x_0} f(x) = L \] does not care what \(f(x_0) \) is; it ignores it
\[\lim_{x \to x_0} f(x) \] need not exist! (function can’t make up it’s mind?)

§2: Rules for finding limits

If two functions \(f(x) \) and \(g(x) \) agree (are equal) for every \(x \) near \(a \)
(but maybe not at \(a \)), then \(\lim_{x \to a} f(x) = \lim_{x \to a} g(x) \)

Ex.: \[\lim_{x \to 2} \frac{x^2 - 3x + 2}{x^2 - 4} = \lim_{x \to 2} \frac{x - 1}{x + 2} \]

If \(f(x) \to L \) and \(g(x) \to M \) as \(x \to x_0 \) (and \(c \) is a constant), then
\[f(x) + g(x) \to L + M \; ; \; \; \; f(x) - g(x) \to L - M \; ; \; \; cf(x) \to cL \; ; \; \; f(x)g(x) \to LM \; ; \; \; \text{and} \; \frac{f(x)}{g(x)} \to \frac{L}{M} \; \text{provided} \; M \neq 0 \]

If \(f(x) \) is a polynomial, then \(\lim_{x \to x_0} f(x) = f(x_0) \)

Basic principle: to solve \(\lim_{x \to x_0} \), plug in \(x = x_0 \)!

If (and when) you get \(0/0 \), try something else! (Factor \(x - x_0 \) out of top and bottom...)

If a function has something like \(\sqrt{x} - \sqrt{a} \) in it, try multiplying (top and bottom) with \(\sqrt{x} + \sqrt{a} \)

Sandwich Theorem: If \(f(x) \leq g(x) \leq h(x) \), for all \(x \) near \(a \) (but not \underline{at} \(a \)), and
\[
\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L, \quad \text{then} \quad \lim_{x \to a} g(x) = L.
\]

§4: **Extensions of the limit concept**

Motivation: the Heaviside function

![Graph of the Heaviside function](image)

The Heaviside function has no limit at 0; it can't make up its mind whether to be 0 or 1. But if we just look to either side of 0, everything is fine; on the left, \(H(0) \) 'wants' to be 0, while on the right, \(H(0) \) 'wants' to be 1.

It's because these numbers are different that the limit as we approach 0 does not exist; but the 'one-sided' limits DO exist.

Limit from the right: \(\lim_{x \to a^+} f(x) = L \) means \(f(x) \) is close to \(L \)
when \(x \) is close to, and **bigger than**, \(a \)

Limit from the left: \(\lim_{x \to a^-} f(x) = M \) means \(f(x) \) is close to \(M \)
when \(x \) is close to, and **smaller than**, \(a \)

\[
\lim_{x \to a} f(x) = L, \quad \text{then means} \quad \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L
\]

Infinite limits: \(\infty \) represents something bigger than any number we can think of
\[
\lim_{x \to a} f(x) = \infty, \quad \lim_{x \to a} f(x) = -\infty
\]

Also have \(\lim_{x \to a} f(x) \) is really large as \(x \) gets close to \(a \)

\[
\lim_{x \to a^+} f(x) = \infty, \quad \lim_{x \to a^-} f(x) = \infty
\]

Typically, an infinite limit occurs where the denominator of \(f(x) \) is zero
(although not always)

§5: **Continuity**

A function \(f \) is **continuous** (cts) at \(a \) if \(\lim_{x \to a} f(x) = f(a) \)

This means: (1) \(\lim_{x \to a} f(x) \) exists; (2) \(f(a) \) exists; and (3) they're equal.

Limit theorems say (sum, difference, product, quotient) of cts functions are cts.

Polynomials are continuous at every point;

rational functions are continuous except where \(\text{denom}=0 \).

Points where a function is not continuous are called **discontinuities**.

Four flavors:

- **removable**: both one-sided limits are the same
- **jump**: one-sided limits exist, not the same
- **infinite**: one or both one-sided limits is \(\infty \) or \(-\infty \)
Chapter 2: Derivatives

§1: The derivative of a function

Derivative = limit of difference quotient (two flavors)

$f'(x_0)$ exists, say f is differentiable at x_0

Fact: f differentiable (differentiable) at x_0, then f cts at x_0

$h \to 0$ notation: replace x_0 with x (= variable), get $f'(x) = \text{new function}$

$f'(x) = \text{the derivative of } f = \text{function whose values are the slopes of the tangent lines to the graph of } y = f(x) \text{. Domain = every point where the limit exists}$

Notation:

$$f'(x) = \frac{dy}{dx} = \frac{d}{dx}(f(x)) = \frac{df}{dx} = y' = D_xf = Df = (f(x))'$$

§2: Differentiation rules

$$\frac{d}{dx}(\text{constant}) = 0$$

$$\frac{d}{dx}(x) = 1$$

$$(f(x)+g(x))' = (f(x))' + (g(x))'$$

$$(f(x)-g(x))' = (f(x))' - (g(x))'$$

(c$f(x))' = c(f(x))'$$

$$(f(x)g(x))' = (f(x))'g(x)+f(x)(g(x))'$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

(x^n)' = nx^{n-1}, \text{ for } n=0,1,-1,2,-2,3,......$$

$$((1/g(x))' = -g'g/(g(x))^2)$$

$f'(x)$ is ‘just’ a function, so we can take its derivative!

$$(f'(x))' = f''(x) \quad = y'' = \frac{d^2y}{dx^2} = \frac{d^2f}{dx^2}$$

= second derivative of f (=rate of change of rate of change of f !)

Keep going! $f'''(x) = 3$rd derivative, $f^{(n)}(x) = n$th derivative
§3: Rates of change

Physical interpretation:
\(f(t) = \text{position at time } t \)
\(f'(t) = \text{rate of change of position} = \text{velocity} \)
\(f''(t) = \text{rate of change of velocity} = \text{acceleration} \)
\(|f'(t)| = \text{speed} \)

Basic principle: for object to change direction (velocity changes sign),
\(f'(t) = 0 \) somewhere (IVT!)
Examples:
Free-fall: object falling near earth; \(s(t) = s_0 + v_0 t - \frac{g}{2} t^2 \)
\(s_0 = s(0) = \text{initial position}; v_0 = \text{initial velocity}; g = \text{acceleration due to gravity} \)

Economics:
\(C(x) = \text{cost of making } x \text{ objects}; R(x) = \text{revenue from selling } x \text{ objects}; \)
\(P = R - C = \text{profit} \)
\(C'(x) = \text{marginal cost} = \text{cost of making 'one more' object} \)
\(R'(x) = \text{marginal revenue}; \) profit is maximized when \(P'(x) = 0 \); i.e., \(R'(x) = C'(x) \)

§4: Derivatives of trigonometric functions

Basic limit: \(\lim_{x\to0} \frac{\sin x}{x} = 1 \); everything else comes from this!

Note: this uses radian measure! \(\lim_{x\to0} \frac{\sin(bx)}{x} = b \)

Then we get:
\((\sin x)' = \cos x \)
\((\cos x)' = -\sin x \)
\((\tan x)' = \sec^2 x \)
\((\cot x)' = -\csc^2 x \)
\((\sec x)' = \sec x \tan x \)
\((\csc x)' = -\csc x \cot x \)

§5: The Chain Rule

Composition \((g \circ f)(x_0) = g(f(x_0)) \); (note: we don’t know what \(g(x_0) \) is.)
\((g \circ f)' \) ought to have something to do with \(g'(f(x)) \) and \(f'(x) \)

in particular, \((g \circ f)'(x_0) \) should depend on \(f'(x_0) \) and \(g'(f(x_0)) \)

Chain Rule: \((g \circ f)'(x_0) = g'(f(x_0))f'(x_0) \)
\(= (d(\text{outside}) \text{ eval'd at inside fcn}) \cdot (d(\text{inside})) \)
Ex: \((x^3 + x - 1)^4)' = (4(x^3 + 1 - 1)^3)(3x^2 + 1) \)

Different notation:
y = g(f(x)) = g(u), where \(u = f(x) \), then \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \)

§6: Implicit differentiation

We can differentiate functions; what about equations? (e.g., \(x^2 + y^2 = 1 \))

graph looks like it has tangent lines
Idea: Pretend equation defines y as a function of x: $x^2 + (f(x))^2 = 1$ and differentiate!

$$2x + 2f(x)f'(x) = 0; \text{ so } f'(x) = \frac{-x}{f(x)} = \frac{-x}{y}$$

Different notation:

$$x^2 + xy^2 - y^3 = 6; \text{ then } 2x + (y^2 + x(2y \frac{dy}{dx}) - 3y^2 \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-2x - y^2}{2xy - 3y^2}$$

Application: extend the power rule

$$\frac{d}{dx}(x^r) = rx^{r-1} \text{ works for any rational number } r$$

§7: Related Rates

Idea: If two (or more) quantities are related (a change in one value means a change in others), then their rates of change are related, too.

$$xyz = 3; \text{ pretend each is a function of } t, \text{ and differentiate (implicitly).}$$

General procedure:

- Draw a picture, describing the situation; label things with variables.
- Which variables, rates of change do you know, or want to know?
- Find an equation relating the variables whose rates of change you know or want to know.
- Differentiate!
- Plug in the values that you know.