Math 1650

Topics for second exam

(Technically, everything covered on the first exam, plus...)

Chapter 2: Polynomials

§3: Polynomial division

- **root** a of $f \leftrightarrow$ factor $(x - a)$ of $f(x)$
- reason: polynomial (long) division
- $f(x) = (x - a)g(x) + b$; a=root, then $b = 0$
- polynomial $= (divisor)(quotient) +$ remainder
 - degree of remainder is less than degree of divisor
- synthetic division: fast method to divide by $(x-a)$

§4: Real zeros of polynomial functions

- $f(x) = a_nx^n + \cdots + a_1x + a_0$
- ‘Counting’ zeros of f
- Descartes’ rule of signs
 - $p =$number of positive roots of f; $q =$number of negative roots of f
 - (number of changes in sign of coeffs of f) – p is ≥ 0 and even
 - (number of changes in sign of coeffs of $f(-x)$) – q is ≥ 0 and even

Rational roots test

- If a_n, \ldots, a_0 are all integers, $a_n \neq 0$, and $r = p/q$ is a rational root of f, then
 - q divides a_n evenly and p divides a_0 evenly.
 - backwards: can show roots of a polynomial can’t be rational.
- Bounding roots: start with $a_n > 0$.
 - If $c > 0$ and the bottom row after synthetic division of f using c are all ≥ 0,
 - then no root of f is bigger than c.
 - If $c < 0$ and the bottom alternates sign, then no root of f is smaller than c.

§5: Complex numbers

- Some polynomials have no roots, e.g., $f(x) = x^2 + 1$. Invent some!
 - $i = \sqrt{-1}$, pretend i behaves like a real number
 - complex numbers: standard form $z = a + bi$; addition, subtraction, multiplication
 - division: complex conjugate $\overline{z} = a - bi$
 - $z \cdot \overline{z} = a^2 + b^2$ (real!); $z_1/z_2 = (z_1 \cdot \overline{z_2})/(z_2 \cdot \overline{z_2})$
 - $a, b > 0$, then $\sqrt{-a} \cdot \sqrt{-b} = -\sqrt{(-a)(-b)}$ (unfortunately)

§6: The fundamental theorem of algebra

- FTA: Every polynomial $f(x)$ (with coefficients in \mathbb{C} or \mathbb{R}) has a complex root r; $f(r)=0$
- Every polynomial factors into linear factors (with coefficients in \mathbb{C})
- FTA says it can be done; it doesn’t tell you how to do it!
- Conjugate pairs: if coeffs of f are real and r is a root, then so is \overline{r}
 - $(x - r)(x - \overline{r})$ has real coeffs
- every polynomial with real coeffs factors in linear and irreducible quadratic factors.

§7: Rational functions

- rational function $= $ quotient of polynomials
 - $p(x) = a_nx^n + \cdots + a_0$; $q(x) = b_mx^m + \cdots + b_0$; $f(x) = p(x)/q(x)$
 - domain $= \text{ where } q(x) \neq 0$
- vertical asymptote $x = a$; $f(x) \to \pm \infty$ as $x \to a$
- horizontal asymptote: $f(x) \to a$ as $x \to \pm \infty$
 - $n < m$: horiz. asymp. $y = 0$
 - $n = m$: horiz. asymp. $y = a_n/b_m$
Chapter 3: Exponential and logarithmic functions

§1: Exponential functions

exponential expressions a^b
- Rules: $a^{b+c} = a^b a^c$; $a^{bc} = (a^b)^c$; $(ab)^c = a^c b^c$
- Function $f(x) = a^x$; approximate $f(x)$ by $f(\text{rational number close to } x)$
 - Domain: \mathbb{R} ; range: $(0, \infty)$; horiz. asymp. $y = 0$
 - Graphs:

 $a > 1$
 - Most natural base: $e = 2.718281829459045$.....
 - Exponential growth: compound interest
 - $P=$initial amount, $r=$interest rate, compounded n times/year
 - $A(t) = P \cdot (1 + r/n)^{nt}$
 - $n \to \infty$, continuous compounding : $A(t) = Pe^{rt}$
 - Radioactive decay: half-life = k ($A(k) = A(0)/2$)
 - $A(t) = A(0)(1/2)^{t/k}$

§2: Logarithmic functions

log x = the number you raise a to to get x
- log x is the inverse of a^x
- $a =$ base of the logarithm
- log $a(x^x) = x$, all x ; $a^{\log_a x} = x$, all $x > 0$
- Domain: all $x > 0$; range: all x
- Graph = reflection of graph of a^x across line $y = x$
 - vertical asymptote: $x = 0$
- natural logarithm: log e, $x = \ln x$

§3: Properties of logarithms

logarithms undo exponentials; properties are ‘reverse’ of exponentials
- $\log_a (bc) = \log_a b + \log_a c$; $\log_a (b^c) = c \log_a b$
- $(\log_b c)(\log_a b) = \log_a (b^{\log_b c}) = \log_a c$; so $\log_b c = \frac{\log_a c}{\log_a b}$
- E.g., $a = e$: $\log_b c = \frac{\ln c}{\ln b}$

§4: Exponential and logarithmic equations

exponential equation: take logs!
- $a^{\text{blah}} = \text{bleh}$, then $(\text{blah}) \ln a = \ln(\text{bleh})$
- $(2^x - 3)(2^x - 7) = 0$, then $2^x = 3$ or $2^x = 7$

logarithmic equation: combine into a single log (one on each side?) and exponentiate both sides
Application: doubling time
time for investment to triple at interest rate of r compounded n times/year:
solve $(1 + r/n)^{nt} = 3$