
Math 107H

Topics for the second exam

Technically, everything for the first exam! Plus:

Improper integrals

Fund Thm of Calc:

∫ b

a

f(x) dx = F (b)− F (a), where F ′(x) = f(x)

Problems: a = −∞, b = ∞; f blows up at a or b or somewhere in between
integral is“improper”; usual technique doesn’t work. Solution to this:

∫

∞

a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

∫ b

−∞

f(x) dx = lim
a→−∞

∫ b

a

f(x) dx

(blow up at a)

∫ b

a

f(x) dx = lim
r→a+

∫ b

r

f(x) dx = lim
ǫ→0+

∫ b

a+ǫ

f(x) dx

(similarly for blowup at b (or both!))
∫ b

a

f(x) dx = lim
s→b−

∫ s

a

f(x) dx = lim
ǫ→0+

∫ b−ǫ

a

f(x) dx

(blows up at c (b/w a and b))

∫ b

a

f(x) dx = lim
r→c−

∫ r

a

f(x) dx + lim
s→c+

∫ b

s

f(x) dx

The integral converges if (all of the) limit(s) are finite

Comparison: 0 ≤ f(x) ≤ g(x) for all x;

if

∫

∞

a

g(x) dx converges, so does

∫

∞

a

f(x) dx ;

if

∫

∞

a

f(x) dx diverges, so does

∫

∞

a

g(x) dx .

Applications of integration

Area between curves. Region between two curves; approximate by rectangles

a b

y=f(x)

y=g(x)

Area =

∫ right

left

(top)− (bottom) dx =

∫ b

a

f(x)− g(x) dx

Integrate dy: Area =

∫ top

bottom

(right)− (left) dy

Which function is top/bottom changes? Cut interval into pieces, and use

∫ b

a

=

∫ c

a

+

∫ b

c

Sometimes to calculate area between f(x) and g(x), need to first figure out limits of integration; solve
f(x) = g(x), then decide which one is bigger in between each pair of solutions.

Volume by slicing. To calculate volume, aprroximate region by objects whose volume we can calculate.
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Volume ≈
∑

(volumes of ‘cylinders’)
=

∑

(area of base)(height)
=

∑

(area of cross-section)∆xi .

So volume =

∫ right

left

(area of cross section) dx

Solids of revolution: disks and washers. Solid of revolution: take a region in the plane and revolve
it around an axis in the plane.

region

rotate

take cross-sections perpendicular to
axis of revolution;

cross-section = disk (area=πr2)
or washer (area=πR2 − πr2)

rotate around x-axis: write r
(and R) as functions of x,
integrate dx

rotate around y-axis: write r
(and R) as functions of y,
integrate dy

Otherwise, everything is as before: volume =

∫ right

left

A(x) dx or volume =

∫ top

bottom

A(y) dy

The same is true if axis is parallel to x− or y−axis; r and R just change
(we add a constant).

Volume by cylindrical shells.
A different approach to solids of revolution: use lines parallel to the axis we revolve around. The

segment meeting the region R in the plane, when spun, is a cylinder, with area (circumference)×(height).
These cylinders sweep out the solid of revolution, as the segments sweep out the region R, and the
volume of the solid is the integral of the areas of these cylinders (since a thickened cylinder has volume
≈(circumference)(height)∆x. But! Circumference and height can be computed from knowing the region
and the axis; if we spin around a vertical line x = k, then circumference is 2π|x− k| and height is ”top
− bottom”, and so if vertical lines hitting R run from x = a to x = b, then

volume spun around x = k is
∫ b

a
2π|x− k|(top-bottom) dx.

If we spin R around a horizontal line y = k instead, then cylindrical shells has us meet R in
horizontal lines, which meet R in segments from ‘left’ to ‘right’; the radius of our cylindrical shell will
be |y − k| and the volume when spun around y = k is

∫ top

bottom
2π|y − k|(right-left) dy.

For example, if we spin the region under y = sinx between x = 0 and x = π around the line
x = −2, then the volume of the solid of revolution can be computed as

∫ π

0
2π|x− (−2)|(sinx− 0) dx =

∫ π

0
2π(x+ 2) sinx dx .

Arclength. Idea: approximate a curve by lots of short line segments; length of curve ≈ sum of lengths
of line segments.

A parametric curve is the path traced out by a point moving in the plane. To describe its position
at time t, we need to know its coordinates: x = x(t), y = y(t). Line segment between (x(ti), y(ti)) and
(x(ti+1), y(ti+1)) has length
√

[x(ti+1)− x(ti)]2 + [y(ti+1)− y(ti)]2

=

√

[
x(ti+1)− x(ti)

ti+1 − ti
]2 + [

y(ti+1)− y(ti)

ti+1 − ti
]2 · (ti+1 − ti) ≈

√

[x′(ti)]2 + [y′(ti)]2 ·∆ti

So length of curve =

∫ stop

start

√

[x′(t)]2 + [y′(t)]2 dt
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The problem: integrating
√

[x′(t)]2 + [y′(t)]2 ! Sometimes, [x′(t)]2 + [y′(t)]2 turns out to be a
perfect square.....

Special case: curve is the graph of a function y = f(x). Parametrize: x = t, y = f(t), so

length of curve =

∫ right

left

√

1 + [f ′(t)]2 dt =

∫ b

a

√

1 + [f ′(x)]2 dx

Surface area. When we spin a curve around an axis, we create a surface of revolution. We can
compute the area of this surface by borrowing ideas from arclength: approximate the curve by line
segments, and spin them around the axis. When you do this (if the segments don’t meet the axis) you
get a piece of the surface of a cone, known as a frustum of a cone. By cutting the frustum along the
segment we spun and laying it flat in the plane, we get a piece of a washer (because the circumference of
the washer is bigger than the circumference of the cone. A more or less routine computation shows that
if you spin the line segment between (a, f(a) and (b, f(b)) around the x-axis (to keep things concrete),
the resulting frustum as area

2π
f(a) + f(b)

2

√

(b− a)2 + (f(b)− f(a))2 .

So if we cut the interval from a to b (which is the piece of the graph y = f(x) we will spin) into
pieces, and build the frusta for each line segment we use to approximate the graph, and add them
together, we find that the surface area is approximated by

∑

2πf(xi)
√

∆x2
i + (f(xi+1)− f(xi))2 =

∑

2πf(xi)
√

1 + ( f(xi+1)−f(xi)
∆xi

)2 ·∆xi

≈ 2πf(xi)
√

1 + [f ′(xi)]2 ·∆xi ,

and so the surface area of a surface of revolution, spinning y = f(x) between x = a and x = b
around the x-axis, is

SA =
∫ b

a
2πf(x)

√

1 + [f ′(x)]2 dx.

(An analogous formula can be established for spinning around the y-axis, or around axes parallel
to these (x = k, etc.).)

For example, spinning y = sinx from x = 0 to x = π around the x-axis yields a surface of revolution
whose surface area is

∫ π

0
2π sinx

√
1 + cos2 x dx, an integral we can compute using the substitution

u = cosx, followed by the trig substitution u = tan v ....

Work. In physics, one studies the behavior of objects when acted upon by various forces. Newton’s
Laws provide the basic connection between a force acting on an object and the effect it has on its
motion:

F = ma ; Force = mass × acceleration

In physics, work represents force being applied across a distance. If a constant force F is applied to
an object, which moves the object a distance D, then the work done on the object is W = F ·D .
Again, if the force applied across this distance is not constant, then we interpret work, in stead, as an
integral, by cutting the distance covered into small pieces of length δx :

W ≈ ∑

F (xi) ∆x , so W =
∫ D

0
F (x) dx

An interesting application of these ideas comes when trying to compute the amount of work necessary
to pump out a tank of some known shape. If the tank has height D (we will think of the top of the tank
as being at x = 0 and the bottom being at x = D), and at height X our cross-section of the tank has
area A(x), then if (as when we computed volume) we think of the fluid in the tank as being a stack of
cylinders with height ∆x, the work necessary to lift the slice at height x to the top of the tank will be

W =(force)(distance) = (m · g) · x = ((A(x) ·∆x)ρg) · x
where ρ is the density of the fluid, m = mass = (volume)(density), and g is the accelration due to
gravity (which is the force we need to overcome to push the fluid up out of the tank). Therefore, the
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work done to empty the tank is approximated by a sum of such quantities, which in turn models a
definite integral; the work done in emptying the tank is

W = ρg
∫ D

0
xA(x) dx

Centers of mass/centroids
The Principle of the Lever tells us that a small mass far from a blanace point can offset a larger mass
closer to the balance point. More specifically, a collection {mi} of masses placed at points {xi} along
a line will balance at the point x where

∑

mix =
∑

mixi. If an object’s mass is more ‘diffuse’, this

passes, in a limit, to an integral: x ∈b
a m(x) dx =

∫ b

a
xm(x) dx, where m(x) is a ‘density’ function.

Passing to two dimensions, we can determine the point where a region R in the plane (with uniform
density, for the sake of simplicity) will balance, by equating ‘density’ with ‘the lengths of parallel line
segments’, to compute the vertical and horizontal lines that the region R will balance along. If we
denote by h(x) the length of the vertical line segment at x meeting R, and by w(y) the length of the
horizontal line segment at y meeting R, then we have

x
∫ b

a
h(x) dx =

∫ b

a
xh(x) dx and y

∫ d

c
w(y) dy =

∫ d

c
yw(y) dy,

where the region R sits inside of the box a ≤ x ≤ b and c ≤ y ≤ d. Noting, however, then
∫ b

a
h(x) dx =

∫ d

c
w(y) dy = the area of R = A(R), we can replace these with a single computation (or rely on geometry

to compute the area). This allows us to compute th centroid of R, the point at which R would balance
on the point of a pin, as

(x, y) = (
1

A(R)

∫ b

a

xh(x) dx,
1

A(R)

∫ d

c

yw(y) dy).

These computations are related to our volume computations: cylindrical shells computations can be
interpreted as saying that volume is equal to A(R)×(the distance travelled by the centroid around the
axis of revolution). This result is known as the Theorem of Pappus. If the centroid can be determined
by ‘other means’ (e.g., the centroid lies on any axis of symmetry of the region R), this can greatly speed
up volume computations!

Infinite sequences and series

Limits of sequences of numbers

A sequence is: a string of numbers; a function f :N→R; write f(n) = an
an = n-th term of the sequence

Basic question: convergence/divergence: lim
n→∞

an = L (or an → L) if

eventually all of the an are always as close to L as we like, i.e.
for any ǫ > 0, there is an N so that if n ≥ N then |an − L| < ǫ

Ex.: an = 1/n converges to 0 ; can always choose N=1/ǫ
an = (−1)n diverges; terms of the sequence never settle down to a single number

If an = f(n) for f : R → R and lim
x→∞

f(x) = L, then an → L as n → ∞
(allows us to use L’Hôpital’s Rule!)

If an is increasing (an+1 ≥ an for every n) and bounded from above

(an ≤ M for every n, for some M) , then an converges (but not necessarily to M !)

limit is smallest number bigger than all of the terms of the sequence

Heirarchy of ‘blowing up’: ln(n) << n << n2 << nk << 2n << en << n! << nn

Limit theorems for sequences

Idea: limits of sequences are a lot like limits of functions

4



If an → L and bn → M , then
(an + bn → L+M (an − bn) → L−M (anbn) → LM , and

(an/bn) → L/M (provided M , all bn are 6= 0)

Squeeze play theorem: if an ≤ bn ≤ cn (for all n large enough) and
an → L and cn → L , then bn → L

If an → L and f :R→R is continuous at L, then f(an) → f(L)

Another basic list: (x = fixed number, k = konstant)
1

n
→ 0 k → k x

1
n → 1

n
1
n → 1 (1 +

x

n
)n → ex

xn

n!
→ 0

xn →
{

0, if |x| < 1 ; 1, if x = 1 ; diverges, otherwise
}

Infinite series

An infinite series is an infinite sum of numbers

a1 + a2 + a3 + . . . =
∞
∑

n=1

an (summation notation)

n-th term of series = an ; N -th partial sum of series = sN =

N
∑

n=1

an

An infinite series converges if the sequence of partial sums
{

sN
}

∞

N=1
converges

We may start the series anywhere:
∞
∑

n=0

an,
∞
∑

n=1

an,
∞
∑

n=3437

an, etc. ;

convergence is unaffected (but the number it adds up to is!)

Ex. geometric series: an = arn ;

n
∑

k=0

ak = a
rn+1 − 1

r − 1
;

∞
∑

n=0

an =
a

1− r

if |r| < 1; otherwise, the series diverges.

Application: compound interest. Principal P earning interest rate r each time period, then amount
accumulated after n time periods is

(1 + r)nP = (1 + r)(1 + r)n−1P = (1 + r)n−1P + r(1 + r)n−1P
= (amount in account at time n− 1) + (interest earned in n-th time interval).

If P is deposited each time period, then amount after n is

P
(1 + r)n+1 − 1

(1 + r)− 1
=

n
∑

k=0

(1 + r)kP = P + (1 + r)
∑n−1

k=0 (1 + r)kP

= (deposit at time n) + (amount in account at time n− 1)
+ (interest earned on amount present at time n− 1)

Ex. Telescoping series: partial sums sN ‘collapse’ to a compact expression

E.g.
∞
∑

n=1

1

n(n+ 2)
=

∞
∑

n=1

1

2

( 1

n
− 1

n+ 2

)

; sN =
1

2

(1

1
+

1

2
−

( 1

N + 1
+

1

N + 2

))

n-th term test: if
∞
∑

n=1

an converges, then an → 0
So if the n-th terms don’t go to 0, then

∞
∑

n=1

an diverges

Basic limit theorems: if

∞
∑

n=1

an and

∞
∑

n=1

bn converge, then

∞
∑

n=1

(an + bn)=

∞
∑

n=1

an+

∞
∑

n=1

bn

∞
∑

n=1

(an − bn)=

∞
∑

n=1

an-

∞
∑

n=1

bn
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∞
∑

n=1

(kan)= k

∞
∑

n=1

an

Truncating a series:

∞
∑

n=1

an =

∞
∑

n=N

an +

N−1
∑

n=1

an

The integral test

Idea:

∞
∑

n=1

an with an ≥ 0 all n, then the partial sums

{sN}∞N=1 forms an increasing sequence;
so converges exactly when bounded from above

If (eventually) an = f(n) for a decreasing function f : [a,∞) →R, then
∫ N+1

a+1

f(x) dx ≤ sN =

N
∑

n=a

an ≤
∫ N

a

f(x) dx

so

∞
∑

n=a

an converges exactly when

∫

∞

a

f(x) dx converges

Ex:

∞
∑

n=1

1

np
converges exactly when p > 1 (p-series)

Ex:
∞
∑

n=1

1

n(lnn)p
converges exactly when p > 1 (logarithmic p-series?)

These families of series make good test cases for comparison with more involved terms (see below!)

Comparison tests

Again, think
∞
∑

n=1

an , with an ≥ 0 all n

Convergence depends only on partial sums sN being bounded

One way to determine this: compare series with one we know converges or diverges

Comparison test: If bn ≥ an ≥ 0 for all n (past a certain point), then

if
∞
∑

n=1

bn converges, so does
∞
∑

n=1

an ; if
∞
∑

n=1

an diverges, so does
∞
∑

n=1

bn

(i.e., smaller than a convergent series converges; bigger than a divergent series diverges)

More refined: Limit comparison test: an and bn ≥ 0 for all n,
an
bn

→ L

If L 6= 0 and L 6= ∞, then
∑

an and
∑

bn either both converge or both diverge

If L = 0 and
∑

bn converges, then so does
∑

an

If L = ∞ and
∑

bn diverges, then so does
∑

an

(Why? eventually (L/2)bn ≤ an ≤ (3L/2)bn ; so can use comparison test.)

Ex:
∑

1/(n3 − 1) converges; L-comp with
∑

1/n3

∑

n/3n converges; L-comp with
∑

1/2n

∑

1/(n ln(n2 + 1)) diverges; L-comp with
∑

1/(n lnn)

6


