EXERCISES 2.2

1. For the function \(g(x) \) graphed here, find the following limits or explain why they do not exist.
 a. \(\lim_{x \to 1} g(x) \)
 b. \(\lim_{x \to 2} g(x) \)
 c. \(\lim_{x \to 3} g(x) \)

 \[
 y = g(x)
 \]

 \[
 1 \quad 2 \quad 3 \quad x
 \]

 \[
 y = g(x)
 \]

 \[
 1 \quad 2 \quad 3 \quad x
 \]

2. For the function \(f(t) \) graphed here, find the following limits or explain why they do not exist.
 a. \(\lim_{t \to 2} f(t) \)
 b. \(\lim_{t \to 1} f(t) \)
 c. \(\lim_{t \to 0} f(t) \)

 \[
 s = f(t)
 \]

 \[
 -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad t
 \]

 \[
 s = f(t)
 \]

 \[
 -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad t
 \]

3. Which of the following statements about the function \(y = f(x) \) graphed here are true, and which are false?
 a. \(\lim_{x \to 0} f(x) \) exists.
 b. \(\lim_{x \to 0} f(x) = 0. \)
 c. \(\lim_{x \to 0} f(x) = 1. \)
 d. \(\lim_{x \to 1} f(x) = 0. \)
 e. \(\lim_{x \to 1} f(x) = 0. \)
 f. \(\lim_{x \to x_0} f(x) \) exists at every point \(x_0 \) in \((-1, 1).\)

4. Which of the following statements about the function \(y = f(x) \) graphed here are true, and which are false?
 a. \(\lim_{x \to 2} f(x) \) does not exist.
 b. \(\lim_{x \to 2} f(x) = 2. \)
 c. \(\lim_{x \to 1} f(x) \) does not exist.
 d. \(\lim_{x \to x_0} f(x) \) exists at every point \(x_0 \) in \((-1, 1).\)
 e. \(\lim_{x \to x_0} f(x) \) exists at every point \(x_0 \) in \((1, 3).\)

5. \(\lim_{x \to 0} \frac{x}{x-1} \)

6. \(\lim_{x \to 0} \frac{1}{x} \)

7. Suppose that a function \(f(x) \) is defined for all real values of \(x \) except \(x = x_0. \) Can anything be said about the existence of \(\lim_{x \to x_0} f(x) ? \) Give reasons for your answer.

8. Suppose that a function \(f(x) \) is defined for all \(x \) in \([-1, 1]. \) Can anything be said about the existence of \(\lim_{x \to x_0} f(x) ? \) Give reasons for your answer.

9. If \(\lim_{x \to 1} f(x) = 5, \) must \(f \) be defined at \(x = 1? \) If it is, must \(f(1) = 5? \) Can we conclude anything about the values of \(f \) at \(x = 1? \) Explain.

10. If \(f(1) = 5, \) must \(\lim_{x \to 1} f(x) \) exist? If it does, then must \(\lim_{x \to 1} f(x) = 5? \) Can we conclude anything about \(\lim_{x \to 1} f(x)? \) Explain.

Find the limits in Exercises 11–28.

11. \(\lim_{x \to -7} (2x + 5) \)

12. \(\lim_{x \to 12} (10 - 3x) \)

13. \(\lim_{x \to 2} (-x^2 + 5x - 2) \)

14. \(\lim_{x \to -2} (x^3 - 2x^2 + 4x + 8) \)

15. \(\lim_{t \to 6} 8(t - 5)(t - 7) \)

16. \(\lim_{x \to 2/3} 3x(2x - 1) \)

17. \(\lim_{x \to 2} x + 3 \)

18. \(\lim_{x \to 5} x - 7 \)

19. \(\lim_{y \to -5} \frac{y^2}{5 - y} \)

20. \(\lim_{y \to 2} \frac{y + 2}{y^2 + 5y + 6} \)

21. \(\lim_{x \to 1} 3(2x - 1)^3 \)

22. \(\lim_{x \to -4} (x + 3)^{1/3} \)

23. \(\lim_{y \to 3} (5 - y)^{2/3} \)

24. \(\lim_{y \to 0} (2y - 8)^{1/3} \)

25. \(\lim_{h \to 0} \frac{\sqrt{3h + 1} + 1}{h} \)

26. \(\lim_{h \to 0} \frac{\sqrt{5h + 4} + 2}{h} \)

27. \(\lim_{h \to 0} \frac{\sqrt{3h + 1} - 1}{h} \)

28. \(\lim_{h \to 0} \frac{\sqrt{5h + 4} - 2}{h} \)
Find the limits in Exercises 29–46.

29. \(\lim_{x \to -3} \frac{x - 5}{x^2 - 25} \)
30. \(\lim_{x \to 3} \frac{x + 3}{x^2 + 4x + 3} \)
31. \(\lim_{x \to -5} \frac{x^2 + 3x - 10}{x + 5} \)
32. \(\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2} \)
33. \(\lim_{l \to 1} \frac{t^2 + t - 2}{t^2 - 1} \)
34. \(\lim_{l \to 1} \frac{t^2 + 3t + 2}{t^2 - t - 2} \)
35. \(\lim_{x \to -2} \frac{-2x - 4}{x^2 + 2x^2} \)
36. \(\lim_{x \to 0} \frac{3y^2 - 16y^2}{9y^3} \)
37. \(\lim_{v \to -1} \frac{v^4 - 1}{v^3 - 1} \)
38. \(\lim_{v \to 2} \frac{v^3 - 8}{v^4 - 16} \)
39. \(\lim_{x \to 3} \frac{\sqrt{x} - 3}{x - 9} \)
40. \(\lim_{x \to -4} \frac{4x - x^2}{2 - \sqrt{x}} \)
41. \(\lim_{x \to 1} \frac{x - 1}{\sqrt{x} + 3 - 2} \)
42. \(\lim_{x \to -1} \frac{\sqrt{x^2 + 8 - 3}}{x + 1} \)
43. \(\lim_{x \to 2} \frac{\sqrt{x^2 + 12 - 4}}{x - 2} \)
44. \(\lim_{x \to -2} \frac{x + 2}{\sqrt{x^2 + 5 - 3}} \)
45. \(\lim_{x \to 3} \frac{2 - \sqrt{x^2 - 5}}{x - 3} \)
46. \(\lim_{x \to -4} \frac{4 - x}{\sqrt{x^2 + 9}} \)

Find the limits in Exercises 47–54.

47. \(\lim_{x \to 0} (2 \sin x - 1) \)
48. \(\lim_{x \to 0} \sin^2 x \)
49. \(\lim_{x \to \infty} x \tan x \)
50. \(\lim_{x \to 0} \frac{1 + x + \sin x}{3 \cos x} \)
51. \(\lim_{x \to 0} \frac{\sqrt{x} + 1 \cos \sqrt{x}}{\cos x} \)
52. \(\lim_{x \to 0} \frac{(x^2 - 1)(2 - \cos x)}{x^4} \)

55. Suppose \(\lim_{x \to 0} f(x) = 1 \) and \(\lim_{x \to 0} g(x) = -5 \). Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

\[
\lim_{x \to 0} \frac{2f(x) - g(x)}{(f(x) + g(x))^{2/3}} = \frac{\lim_{x \to 0} 2f(x) - g(x)}{\left(\lim_{x \to 0} (f(x) + g(x)) \right)^{2/3}}
\]

56. Let \(\lim_{x \to 1} h(x) = 5 \), \(\lim_{x \to -1} p(x) = 1 \), and \(\lim_{x \to 2} r(x) = 2 \). Name the rules in Theorem 1 that are used to accomplish steps (a), (b), and (c) of the following calculation.

\[
\lim_{x \to 1} \frac{\sqrt{5}h(x)}{p(x)(4 - r(x))} = \frac{\lim_{x \to 1} \sqrt{5}h(x)}{\lim_{x \to 1} p(x)(4 - r(x))}
\]
7 b. Graph $y = 1 - (x^2/6)$, $y = (\sin x)/(2 - 2 \cos x)$, and $y = 1$ together for $-2 \leq x \leq 2$. Comment on the behavior of the graphs as $x \to 0$.

70. a. Suppose that the inequalities

$$\frac{1}{2} - \frac{x^2}{24} < \frac{1 - \cos x}{x^2} < 0$$

hold for values of x close to zero. (They do, as you will see in Section 8.9.) What, if anything, does this tell you about

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2}$$

Give reasons for your answer.

7 b. Graph the equations $y = (1/2) - (x^2/24)$, $y = (1 - \cos x)/x^2$, and $y = 1/2$ together for $-2 \leq x \leq 2$. Comment on the behavior of the graphs as $x \to 0$.

You will find a graphing calculator useful for Exercises 71–80.

71. Let $f(x) = (x^2 - 9)/(x + 3)$.

a. Make a table of the values of f at the points $x = -3.1$, -3.01, -3.001, and so on as far as your calculator can go.

Then estimate $\lim_{x \to -3} f(x)$. What estimate do you arrive at if you evaluate f at $x = -2.9$, -2.99, -2.999, ... instead?

b. Support your conclusions in part (a) by graphing f near $x_0 = -3$ and using Zoom and Trace to estimate y-values on the graph as $x \to -3$.

c. Find $\lim_{x \to -3} f(x)$ algebraically, as in Example 7.

72. Let $g(x) = (x^2 - 2)/(x - \sqrt{2})$.

a. Make a table of the values of g at the points $x = 1.4$, 1.41, 1.414, and so on through successive decimal approximations of $\sqrt{2}$. Estimate $\lim_{x \to \sqrt{2}} g(x)$.

b. Support your conclusion in part (a) by graphing g near $x_0 = \sqrt{2}$ and using Zoom and Trace to estimate y-values on the graph as $x \to \sqrt{2}$.

c. Find $\lim_{x \to \sqrt{2}} g(x)$ algebraically.

73. Let $G(x) = (x + 6)/(x^2 + 4x - 12)$.

a. Make a table of the values of G at $x = -5.9$, -5.99, -5.999, and so on. Then estimate $\lim_{x \to -6} G(x)$. What estimate do you arrive at if you evaluate G at $x = -6.1$, -6.01, -6.001, ... instead?

b. Support your conclusions in part (a) by graphing G and using Zoom and Trace to estimate y-values on the graph as $x \to -6$.

c. Find $\lim_{x \to -6} G(x)$ algebraically.

74. Let $h(x) = (x^2 + 2x - 3)/(x^2 - 4x + 3)$.

a. Make a table of the values of h at $x = 2.9$, 2.99, 2.999, and so on. Then estimate $\lim_{x \to 3} h(x)$. What estimate do you arrive at if you evaluate h at $x = 3.1$, 3.01, 3.001, ... instead?

b. Support your conclusions in part (a) by graphing h near $x_0 = 3$ and using Zoom and Trace to estimate y-values on the graph as $x \to 3$.

c. Find $\lim_{x \to 3} h(x)$ algebraically.

75. Let $f(x) = (x^2 - 1)/(|x| - 1)$.

a. Make tables of the values of f at values of x that approach $x_0 = -1$ from above and below. Then estimate $\lim_{x \to -1} f(x)$.

b. Support your conclusion in part (a) by graphing f near $x_0 = -1$ and using Zoom and Trace to estimate y-values on the graph as $x \to -1$.

c. Find $\lim_{x \to -1} f(x)$ algebraically.

76. Let $F(x) = (x^2 + 3x + 2)/(2 - |x|)$.

a. Make tables of values of F at values of x that approach $x_0 = -2$ from above and below. Then estimate $\lim_{x \to -2} F(x)$.

b. Support your conclusion in part (a) by graphing F near $x_0 = -2$ and using Zoom and Trace to estimate y-values on the graph as $x \to -2$.

c. Find $\lim_{x \to -2} F(x)$ algebraically.

77. Let $g(\theta) = (\sin \theta)/\theta$.

a. Make a table of the values of g at values of θ that approach $\theta_0 = 0$ from above and below. Then estimate $\lim_{\theta \to 0} g(\theta)$.

b. Support your conclusion in part (a) by graphing g near $\theta_0 = 0$.

78. Let $G(t) = (1 - \cos t)/t^2$.

a. Make tables of values of G at values of t that approach $t_0 = 0$ from above and below. Then estimate $\lim_{t \to 0} G(t)$.

b. Support your conclusion in part (a) by graphing G near $t_0 = 0$.

79. Let $f(x) = x^{1/(1-x)}$.

a. Make tables of values of f at values of x that approach $x_0 = 1$ from above and below. Does f appear to have a limit as $x \to 1$? If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing f near $x_0 = 1$.

80. Let $f(x) = (3^x - 1)/x$.

a. Make tables of values of f at values of x that approach $x_0 = 0$ from above and below. Does f appear to have a limit as $x \to 0$? If so, what is it? If not, why not?

b. Support your conclusions in part (a) by graphing f near $x_0 = 0$.

81. If $x^4 \leq f(x) \leq x^2$ for x in $[-1, 1]$ and $x^3 \leq f(x) \leq x^4$ for $x < -1$ and $x > 1$, at what points c do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limit at these points?

82. Suppose that $g(x) \leq f(x) \leq h(x)$ for all $x \neq 2$ and suppose that

$$\lim_{x \to 2} g(x) = \lim_{x \to 2} h(x) = -5.$$

Can we conclude anything about the values of f, g, and h at $x = 2$? Could $f(2) = 0$? Could $\lim_{x \to 2} f(x) = 0$? Give reasons for your answers.
83. If \(\lim_{x \to 4} \frac{f(x) - 5}{x - 2} = 1 \), find \(\lim_{x \to 4} f(x) \).

84. If \(\lim_{x \to 2} \frac{f(x)}{x^2} = 1 \), find

 a. \(\lim_{x \to 2} f(x) \)
 b. \(\lim_{x \to 2} \frac{f(x)}{x} \)

85. a. If \(\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 3 \), find \(\lim_{x \to 2} f(x) \).

 b. If \(\lim_{x \to 2} \frac{f(x) - 5}{x - 2} = 4 \), find \(\lim_{x \to 2} f(x) \).

86. If \(\lim_{x \to 0} \frac{f(x)}{x^2} = 1 \), find

 a. \(\lim_{x \to 0} f(x) \)
 b. \(\lim_{x \to 0} \frac{f(x)}{x} \)

87. a. Graph \(g(x) = x \sin(1/x) \) to estimate \(\lim_{x \to 0} g(x) \), zooming in on the origin as necessary.

 b. Confirm your estimate in part (a) with a proof.

88. a. Graph \(h(x) = x^2 \cos(1/x^3) \) to estimate \(\lim_{x \to 0} h(x) \), zooming in on the origin as necessary.

 b. Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS

In Exercises 89–94, use a CAS to perform the following steps:

a. Plot the function near the point \(x_0 \) being approached.

b. From your plot guess the value of the limit.

89. \(\lim_{x \to 2} \frac{x^4 - 16}{x - 2} \)

90. \(\lim_{x \to 1} \frac{x^3 - x^2 - 5x - 3}{(x + 1)^2} \)

91. \(\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} \)

92. \(\lim_{x \to 3} \frac{x^2 - 9}{\sqrt{x^2 + 7} - 4} \)

93. \(\lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \)

94. \(\lim_{x \to 0} \frac{2x^2}{3 - 3 \cos x} \)

2.3 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. We replace vague phrases like “gets arbitrarily close to” in the informal definition with specific conditions that can be applied to any particular example. With a precise definition, we can prove properties given in the preceding section and establish many important limits.

To show that the limit of \(f(x) \) as \(x \to x_0 \) equals the number \(L \), we need to show that the gap between \(f(x) \) and \(L \) can be made “as small as we choose” if \(x \) is kept “close enough” to \(x_0 \). Let us see what this would require if we specified the size of the gap between \(f(x) \) and \(L \).

EXAMPLE 1 Consider the function \(y = 2x - 1 \) near \(x_0 = 4 \). Intuitively it is clear that \(y \) is close to 7 when \(x \) is close to 4, so \(\lim_{x \to 4} (2x - 1) = 7 \). However, how close to \(x_0 = 4 \) does \(x \) have to be so that \(y = 2x - 1 \) differs from 7 by, say, less than 2 units?

Solution We are asked: For what values of \(x \) is \(|y - 7| < 2 \)? To find the answer we first express \(|y - 7| \) in terms of \(x \):

\[
|y - 7| = |(2x - 1) - 7| = |2x - 8|.
\]

The question then becomes: what values of \(x \) satisfy the inequality \(|2x - 8| < 2 \)? To find out, we solve the inequality:

\[
|2x - 8| < 2 \\
-2 < 2x - 8 < 2 \\
6 < 2x < 10 \\
3 < x < 5 \\
-1 < x - 4 < 1.
\]

Keeping \(x \) within 1 unit of \(x_0 = 4 \) will keep \(y \) within 2 units of \(y_0 = 7 \) (Figure 2.15).