On classical integral closure and integral closure relative to an Artinian module

Liliam Carsava Merighe

KUMUNU Jr

Joint work with Prof. Dr. Victor Hugo Jorge Perez

Financial support: CAPES and CNPq
Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

April, 2018
Summary

1 Motivation
 - Rees’ Question
 - Multiplicities

2 The concept of Attached Primes
 - Secondary Representation
 - Attached Primes

3 Integral Closures
 - The Traditional One
 - Integral Closure Relative to an Artinian Module

4 Results
 - The Main Result
 - Conclusion
 - Examples

5 References
Summary

1 Motivation
 - Rees’ Question
 - Multiplicities

2 The concept of Attached Primes
 - Secondary Representation
 - Attached Primes

3 Integral Closures
 - The Traditional One
 - Integral Closure Relative to an Artinian Module

4 Results
 - The Main Result
 - Conclusion
 - Examples

5 References
Let \((R, \mathfrak{m})\) be a commutative Noetherian local ring. Let \(a\) and \(b\) be ideals of \(R\).

Question (Rees, 1990)

What is the relationship between \(\overline{b}\), the classical Northcott-Rees integral closure of \(b\), and \(b^*(H)\), the integral closure of \(b\) relative to the Artinian \(R\)-module \(H\)?

Under what conditions are they equal?
Let \((R, \mathfrak{m})\) be a commutative Noetherian local ring. Let \(a\) and \(b\) be ideals of \(R\).

Question (Rees, 1990)

What is the relationship between \(\overline{b}\), the classical Northcott-Rees integral closure of \(b\), and \(b^{\ast(H)}\), the integral closure of \(b\) relative to the Artinian \(R\)-module \(H\)? Under what conditions are they equal?
Definition

Let \mathfrak{a} be an m-primary ideal, and let M be a finitely generated R-module. The *multiplicity of \mathfrak{a} on M* is defined by

$$e(\mathfrak{a}; M) := \lim_{n \to \infty} \frac{r!}{n^r} \lambda(M/\mathfrak{a}^n M),$$

where $r = \dim R$.
Rees’s Theorem

Let \((R, m)\) be a formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(m\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module. Then \(\overline{a} = \overline{b}\) if and only if \(e(a; M) = e(b; M)\).
Definition

The Noetherian dimension of an Artinian R-module H is defined by

$$\text{Ndim}_R(H) = \inf\{k \mid \exists x_1, \ldots, x_k \in \mathfrak{m} \text{ such that } \lambda(0 :_{H} x_1, \ldots, x_k) < \infty\}.$$

Definition

Let $\mathfrak{a} \subseteq \mathfrak{m}$ be an ideal of R and H an Artinian R-module such that $\lambda(0 :_{H} \mathfrak{a}) < \infty$.

The multiplicity of \mathfrak{a} relative to H is defined by

$$e'(\mathfrak{a}; H) = \lim_{n \to \infty} \frac{d!}{n^d} \lambda(0 :_{H} \mathfrak{a}^n),$$

where $d = \text{Ndim}_R(H)$.

Liliam Carsava Merighe

On class. integ. clos. and integ. clos. relative to an Art. module
Definition

The *Noetherian dimension* of an Artinian R-module H is defined by

$$\text{Ndim}_R(H) = \inf \{ k \mid \exists x_1, \ldots, x_k \in m \text{ such that } \lambda(0:H x_1, \ldots, x_k) < \infty \}.$$

Definition

Let $\mathfrak{a} \subset m$ be an ideal of R and H an Artinian R-module such that $\lambda(0:H \mathfrak{a}) < \infty$.

The *multiplicity of \mathfrak{a} relative to H* is defined by

$$e'(\mathfrak{a}; H) = \lim_{n \to \infty} \frac{d!}{n^d} \lambda(0:H \mathfrak{a}^n),$$

where $d = \text{Ndim}_R(H)$.
Proposition

Let α and β be ideals of R such that $\beta \subseteq \alpha$ and $\lambda(0 :_H \beta) < \infty$. If $\alpha^*(H) = \beta^*(H)$, then $e'(\alpha; H) = e'(\beta; H)$.
Question
Is there a theorem analogous to Rees’s Theorem, for Artinian modules?

Question
Is there a relationship between $e(a; M)$, the multiplicity of a on M, and $e'(a; H)$, multiplicity of a relative to H?
Summary

1 Motivation
 - Rees’ Question
 - Multiplicities

2 The concept of Attached Primes
 - Secondary Representation
 - Attached Primes

3 Integral Closures
 - The Traditional One
 - Integral Closure Relative to an Artinian Module

4 Results
 - The Main Result
 - Conclusion
 - Examples

5 References
A non-zero R-module L is called **secondary** if its multiplication map, $\varphi_x : L \to L$, by any element $x \in R$, is either surjective or nilpotent.

A **secondary representation** for an R-module L is a finite expression $L = L_1 + L_2 + \ldots + L_s$ where L_i is secondary for $1 \leq i \leq s$.

We will say that L is **representable** if such an expression exists.
Secondary Representation

Definition

A non-zero R-module L is called **secondary** if its multiplication map, $\varphi_x : L \to L$, by any element $x \in R$, is either surjective or nilpotent.

Definition

A **secondary representation** for an R-module L is a finite expression $L = L_1 + L_2 + \ldots + L_s$ where L_i is secondary for $1 \leq i \leq s$.

We will say that L is **representable** if such an expression exists.
Secondary Representation

Definition

A non-zero R-module L is called **secondary** if its multiplication map, $\varphi_x : L \to L$, by any element $x \in R$, is either surjective or nilpotent.

Definition

A **secondary representation** for an R-module L is a finite expression $L = L_1 + L_2 + \ldots + L_s$ where L_i is secondary for $1 \leq i \leq s$.

We will say that L is **representable** if such an expression exists.
Attached Primes

Definition
Let p be a prime ideal of R. We say that p is an **attached prime** of L, if $p = (K :_R L) = \text{ann}_R(L/K)$ for some submodule K of L.
The set of attached prime ideals of the R-module L is denoted by $\text{Att}_R(L)$.

Proposition
If L admits an reduced secondary representation $L = L_1 + L_2 + \ldots + L_s$, then $\text{Att}_R(L) = \{\sqrt{(0 :_R L_i)} : 1 \leq i \leq s\}$.
Definition

Let p be a prime ideal of R. We say that p is an **attached prime** of L, if $p = (K :_R L) = \text{ann}_R(L/K)$ for some submodule K of L. The set of attached prime ideals of the R-module L is denoted by $\text{Att}_R(L)$.

Proposition

If L admits an reduced secondary representation $L = L_1 + L_2 + \ldots + L_s$, then $\text{Att}_R(L) = \{\sqrt{(0 :_R L_i)} : 1 \leq i \leq s\}$.

Liliam Carsava Merighe
On class. integ. clos. and integ. clos. relative to an Art. module
Attached Primes

Definition

Let p be a prime ideal of R. We say that p is an attached prime of L, if $p = (K :_R L) = \text{ann}_R(L/K)$ for some submodule K of L. The set of attached prime ideals of the R-module L is denoted by $\text{Att}_R(L)$.

Proposition

If L admits an reduced secondary representation $L = L_1 + L_2 + \ldots + L_s$, then $\text{Att}_R(L) = \{ \sqrt{(0 :_R L_i)} : 1 \leq i \leq s \}$.
Attached Primes

Theorem

If L is an Artinian R-module, then L admits a reduced secondary representation and so $\text{Att}_R(L)$ is a finite set.

Theorem (Ooish, 1976)

Let (R, m) be a Noetherian local ring. If M is a finitely generated R-module, then

$$\text{Ass}_R(M) = \text{Att}_R(D(M)).$$
Theorem
If L is an Artinian R-module, then L admits a reduced secondary representation and so $\text{Att}_R(L)$ is a finite set.

Theorem (Ooish, 1976)
Let (R, m) be a Noetherian local ring. If M is a finitely generated R-module, then

$$\text{Ass}_R(M) = \text{Att}_R(D(M)).$$
Let M and N be two R-modules, $\alpha \subseteq R$ an ideal and $i \in \mathbb{Z}$.

Definition (Grothendieck, 1966)

$$H^i_\alpha(N) := \lim_{\longrightarrow n} \Ext^i_R(R/\alpha^n, N),$$

is the ith **local cohomology module** with respect to α.

Definition (Herzog, 1970)

$$H^i_\alpha(M, N) := \lim_{\longrightarrow n} \Ext^i_R(M/\alpha^nM, N),$$

is the ith **generalized local cohomology module** with respect to α.
Let M and N be two R-modules, $a \subseteq R$ an ideal and $i \in \mathbb{Z}$.

Definition (Grothendieck, 1966)

$$H^i_a(N) := \lim_{\longrightarrow} \text{Ext}^i_R(R/a^n, N),$$

is the ith **local cohomology module** with respect to a.

Definition (Herzog, 1970)

$$H^i_a(M, N) := \lim_{\longrightarrow} \text{Ext}^i_R(M/a^nM, N),$$

is the ith **generalized local cohomology module** with respect to a.

Liliam Carsava Merighe

On class. integ. clos. and integ. clos. relative to an Art. module
Let M and N be two R-modules, $\alpha \subseteq R$ an ideal and $i \in \mathbb{Z}$.

Definition (Grothendieck, 1966)

$$H^i_\alpha(N) := \lim_{\longrightarrow n} \text{Ext}^i_R(R/\alpha^n, N),$$

is the ith **local cohomology module** with respect to α.

Definition (Herzog, 1970)

$$H^i_\alpha(M, N) := \lim_{\longrightarrow n} \text{Ext}^i_R(M/\alpha^n M, N),$$

is the ith **generalized local cohomology module** with respect to α.

Liliam Carsava Merighe

On class. integ. clos. and integ. clos. relative to an Art. module
Question (MacDonald and Sharp, 1971)

How to determine the set of attached primes of the (generalized) local cohomology modules?
Summary

1 Motivation
 • Rees’ Question
 • Multiplicities

2 The concept of Attached Primes
 • Secondary Representation
 • Attached Primes

3 Integral Closures
 • The Traditional One
 • Integral Closure Relative to an Artinian Module

4 Results
 • The Main Result
 • Conclusion
 • Examples

5 References
Definition (Northcott and Rees, 1954)

An element x of R is said to be **integrally dependent on** α if there exist elements $c_1, \ldots, c_n \in R$, with $c_i \in \alpha^i$ for $i = 1, \ldots, n$ such that

$$x^n + c_1x^{n-1} + \cdots + c_{n-1}x + c_n = 0.$$

Moreover,

$$\bar{\alpha} := \{y \in R : y \text{ is integrally dependent on } \alpha\}$$

is an ideal of R, called the **integral closure of** α.

Liliam Carsava Merighe

On class. integ. clos. and integ. clos. relative to an Art. module
Integral Closure

Definition (Northcott and Rees, 1954)

An element x of R is said to be **integrally dependent on** α if there exist elements $c_1, \ldots, c_n \in R$, with $c_i \in \alpha^i$ for $i = 1, \ldots, n$ such that

$$x^n + c_1x^{n-1} + \cdots + c_{n-1}x + c_n = 0.$$

Moreover,

$$\overline{\alpha} := \{y \in R : y \text{ is integrally dependent on } \alpha\}$$

is an ideal of R, called the **integral closure of** α.
Let H an Artinian R-module.

Definition (Sharp and Taherizadeh, 1988)

An element x of R is said to be **integrally dependent on** a relative to H if there exists $n \in \mathbb{N}^*$ such that

$$
\left(0 :_H \sum_{i=1}^{n} x^{n-i} a^i \right) \subseteq (0 :_H x^n).
$$

Moreover,

$$
a^*_H := \{ y \in R : y \text{ is integrally dependent on } a \text{ relative to } H \}
$$

is an ideal of R, called the **integral closure of** a relative to H.

Liliam Carsava Merighe

On class. integ. clos. and integ. clos. relative to an Art. module
Integral Closure Relative to an Artinian Module

Let H an Artinian R-module.

Definition (Sharp and Taherizadeh, 1988)

An element x of R is said to be **integrally dependent on α relative to H** if there exists $n \in \mathbb{N}^*$ such that

$$
\left(0 :_H \sum_{i=1}^{n} x^{n-i} \alpha^i \right) \subseteq \left(0 :_H x^n \right).
$$

Moreover,

$$
\alpha^*(H) := \{y \in R : y \text{ is integrally dependent on } \alpha \text{ relative to } H\}
$$

is an ideal of R, called the **integral closure of α relative to H**.
Integral Closure Relative to an Artinian Module

Let H an Artinian R-module.

Definition (Sharp and Taherizadeh, 1988)

An element x of R is said to be \textbf{integrally dependent on a relative to H} if there exists $n \in \mathbb{N}^*$ such that

$$
(0 :_H \sum_{i=1}^{n} x^{n-i} a^i) \subseteq (0 :_H x^n).
$$

Moreover,

$$
a^*_H := \{ y \in R : y \text{ is integrally dependent on } a \text{ relative to } H \}
$$

is an ideal of R, called the \textbf{integral closure of a relative to H}.
Question (Rees, 1990)

What is the relationship between \overline{b}, the classical Northcott-Rees integral closure of b, and $b^*(H)$, the integral closure of b relative to the Artinian R-module H?
Summary

1 Motivation
 - Rees’ Question
 - Multiplicities

2 The concept of Attached Primes
 - Secondary Representation
 - Attached Primes

3 Integral Closures
 - The Traditional One
 - Integral Closure Relative to an Artinian Module

4 Results
 - The Main Result
 - Conclusion
 - Examples

5 References
Answer to Rees’s Question

In 1990, Sharp, Tiras and Yassi responded to that question in a particular case: when \((R, m)\) is a quasi-unmixed local ring of dimension \(r\) and \(H = H^r_m(R)\) is the \(r\)th local cohomology module of \(R\) with respect to \(m\).

Our main result generalizes their result:

Theorem

Assume \((R, m)\) is a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. The following conditions are equivalent:

(i) \(\bar{a} = a^*(H)\) for every ideal \(a\) of \(R\);

(ii) \(\bar{0} = 0^*(H)\);

(iii) every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).
Answer to Rees’s Question

In 1990, Sharp, Tiras and Yassi responded to that question in a particular case: when \((R, \mathfrak{m})\) is a quasi-unmixed local ring of dimension \(r\) and \(H = H^r_{\mathfrak{m}}(R)\) is the \(r\)th local cohomology module of \(R\) with respect to \(\mathfrak{m}\).

Our main result generalizes their result:

Theorem

Assume \((R, \mathfrak{m})\) is a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. The following conditions are equivalent:

(i) \(\bar{a} = a^*(H)\) for every ideal \(a\) of \(R\);
(ii) \(\bar{0} = 0^*(H)\);
(iii) every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).
Answer to Rees’s Question

In 1990, Sharp, Tiras and Yassi responded to that question in a particular case: when \((R, m)\) is a quasi-unmixed local ring of dimension \(r\) and \(H = H_r^n(R)\) is the \(r\)th local cohomology module of \(R\) with respect to \(m\).

Our main result generalizes their result:

Theorem

Assume \((R, m)\) is a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. The following conditions are equivalent:

(i) \(\overline{a} = a^*(H)\) for every ideal \(a\) of \(R\);

(ii) \(\overline{0} = 0^*(H)\);

(iii) every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).
In 1990, Sharp, Tiras and Yassi responded to that question in a particular case: when \((R, \mathfrak{m})\) is a quasi-unmixed local ring of dimension \(r\) and \(H = H^r_m(R)\) is the \(r\)th local cohomology module of \(R\) with respect to \(\mathfrak{m}\).

Our main result generalizes their result:

Theorem

Assume \((R, \mathfrak{m})\) is a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. The following conditions are equivalent:

(i) \(\overline{a} = a^*(H)\) for every ideal \(a\) of \(R\);

(ii) \(\overline{0} = 0^*(H)\);

(iii) every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).
Theorem

Let \((R, m)\) be a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. Then \(\overline{b} = b^*(H)\), for every ideal \(b\) of \(R\), if and only if every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).

Rees's Theorem

Let \((R, m)\) be a formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(m\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module. Then \(\overline{a} = \overline{b}\) if and only if \(e(a; M) = e(b; M)\).

Proposition

Let \(a\) and \(b\) be ideals of \(R\) such that \(b \subseteq a\) and \(\lambda(0_H b) < \infty\). If \(a^*(H) = b^*(H)\), then \(e'(a; H) = e'(b; H)\).
Conclusion

Theorem

Let \((R, m)\) be a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. Then \(\overline{b} = b^*(H)\), for every ideal \(b\) of \(R\), if and only if every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).

Rees’s Theorem

Let \((R, m)\) be a formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(m\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module. Then \(\overline{a} = \overline{b}\) if and only if \(e(a; M) = e(b; M)\).

Proposition

Let \(a\) and \(b\) be ideals of \(R\) such that \(b \subseteq a\) and \(\lambda(0 :_H b) < \infty\). If \(a^*(H) = b^*(H)\), then \(e'(a; H) = e'(b; H)\).
Theorem

Let \((R, m)\) be a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. Then \(\bar{b} = b^*(H)\), for every ideal \(b\) of \(R\), if and only if every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).

Rees’s Theorem

Let \((R, m)\) be a formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(m\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module. Then \(\bar{a} = \bar{b}\) if and only if \(e(a; M) = e(b; M)\).

Proposition

Let \(a\) and \(b\) be ideals of \(R\) such that \(b \subseteq a\) and \(\lambda(0 :_H b) < \infty\). If \(a^*(H) = b^*(H)\), then \(e'(a; H) = e'(b; H)\).
Conclusion

Theorem

Let \((R, \mathfrak{m})\) be a commutative Noetherian complete local ring. Let \(H\) an Artinian \(R\)-module. Then \(\overline{b} = b^*(H)\), for every ideal \(b\) of \(R\), if and only if every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).

Rees’s Theorem

Let \((R, \mathfrak{m})\) be a formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(\mathfrak{m}\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module. Then \(\overline{a} = \overline{b}\) if and only if \(e(a; M) = e(b; M)\).

Proposition

Let \(a\) and \(b\) be ideals of \(R\) such that \(b \subseteq a\) and \(\lambda(0 :_H b) < \infty\). If \(a^*(H) = b^*(H)\), then \(e'(a; H) = e'(b; H)\).
Therefore...

Theorem

Let \((R, \mathfrak{m})\) be a commutative complete formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(\mathfrak{m}\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module, and let \(H\) be an Artinian \(R\)-module such that every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Suppose \(\lambda(0 :_H b) < \infty\) and \(e(a; M) = e(b; M)\). Then \(e'(a; H) = e'(b; H)\).
Therefore...

Theorem

Let \((R, \mathfrak{m})\) be a commutative complete formally equidimensional Noetherian local ring, and \(b \subseteq a\) be \(\mathfrak{m}\)-primary ideals of \(R\). Let \(M\) be a finitely generated \(R\)-module, and let \(H\) be an Artinian \(R\)-module such that every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Suppose \(\lambda(0 :_H b) < \infty\) and \(e(a; M) = e(b; M)\). Then \(e'(a; H) = e'(b; H)\).
Example 1

Let \((R, \mathfrak{m})\) a Noetherian complete local ring.

Let \(M\) a finitely generated \(R\)-module such that \(\text{Supp}_R(M) = \text{Supp}_R(R)\).

Take \(H = D(M)\). Then \(\text{Att}_R(H) = \text{Ass}_R(M)\).

Also, every minimal prime ideal of \(R\) is in \(\text{Ass}_R(M)\).

Then every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\).

Therefore, for all ideal \(\mathfrak{b}\) of \(R\),

\[\mathfrak{b} = \mathfrak{b}^\ast(H) \, . \]
Example 1

Let \((R, \mathfrak{m})\) a Noetherian complete local ring. Let \(M\) a finitely generated \(R\)-module such that \(\text{Supp}_R(M) = \text{Supp}_R(R)\).

Take \(H = D(M)\). Then \(\text{Att}_R(H) = \text{Ass}_R(M)\).

Also, every minimal prime ideal of \(R\) is in \(\text{Ass}_R(M)\).

Then every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Therefore, for all ideal \(\mathfrak{b}\) of \(R\),

\[
\overline{\mathfrak{b}} = \mathfrak{b}^*(H).
\]
Example 1

Let \((R, \mathfrak{m})\) a Noetherian complete local ring. Let \(M\) a finitely generated \(R\)-module such that \(\text{Supp}_R(M) = \text{Supp}_R(R)\).

Take \(H = D(M)\). Then \(\text{Att}_R(H) = \text{Ass}_R(M)\).

Also, every minimal prime ideal of \(R\) is in \(\text{Ass}_R(M)\).

Then every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Therefore, for all ideal \(b\) of \(R\),

\[\overline{b} = b^*(H). \]
Example 1

Let \((R, \mathfrak{m})\) a Noetherian complete local ring. Let \(M\) a finitely generated \(R\)-module such that \(\text{Supp}_R(M) = \text{Supp}_R(R)\).

Take \(H = D(M)\). Then \(\text{Att}_R(H) = \text{Ass}_R(M)\).

Also, every minimal prime ideal of \(R\) is in \(\text{Ass}_R(M)\).

Then every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Therefore, for all ideal \(b\) of \(R\),

\[
\overline{b} = b^{\ast(H)}.
\]
Example 1

Let \((R, m)\) a Noetherian complete local ring. Let \(M\) a finitely generated \(R\)-module such that \(\text{Supp}_R(M) = \text{Supp}_R(R)\).

Take \(H = D(M)\). Then \(\text{Att}_R(H) = \text{Ass}_R(M)\).

Also, every minimal prime ideal of \(R\) is in \(\text{Ass}_R(M)\).

Then every minimal prime ideal of \(R\) belongs to \(\text{Att}_R(H)\). Therefore, for all ideal \(b\) of \(R\),

\[\bar{b} = b^*(H). \]
Example 2

Let \((R, \mathfrak{m})\) a Noetherian local ring.

Gu and Chu showed: if \(M\) and \(N\) are finitely generated \(R\)-modules such that \(pd(M) = d < \infty\) and \(\text{dim } N = n < \infty\), then

\[
\text{Att}_R(H^{d+n}_a(M, N)) = \{p \in \text{Ass}_R N : \text{cd}(a, M, R/p) = d + n\}.
\]

Let \(H := H^{n+d}_a(M, N)\) and suppose that \(\text{cd}(a, M, R/p) = d + n\) for all minimal prime ideals \(p\) of \(R\).

Then for all ideal \(b\) of \(R\)

\[
\overline{b} = b^*(H).
\]
Example 2

Let \((R, m)\) a Noetherian local ring.

Gu and Chu showed: if \(M\) and \(N\) are finitely generated \(R\)-modules such that \(pd(M) = d < \infty\) and \(\dim N = n < \infty\), then

\[
\text{Att}_R(H^{d+n}_a(M, N)) = \{ p \in \text{Ass}_R N : \text{cd}(a, M, R/p) = d + n \}.
\]

Let \(H := H^{n+d}_a(M, N)\) and suppose that \(\text{cd}(a, M, R/p) = d + n\) for all minimal prime ideals \(p\) of \(R\).

Then for all ideal \(b\) of \(R\)

\[
\overline{b} = b^*(H).
\]
Example 2

Let \((R, m)\) a Noetherian local ring. Gu and Chu showed: if \(M\) and \(N\) are finitely generated \(R\)-modules such that \(pd(M) = d < \infty\) and \(dim N = n < \infty\), then

\[
\text{Att}_R(H^{d+n}_a(M, N)) = \{p \in \text{Ass}_R N : cd(a, M, R/p) = d + n\}.
\]

Let \(H := H^{n+d}_a(M, N)\) and suppose that \(cd(a, M, R/p) = d + n\) for all minimal prime ideals \(p\) of \(R\).

Then for all ideal \(b\) of \(R\)

\[
\overline{b} = b^*(H).
\]
Example 2

Let \((R, \mathfrak{m})\) a Noetherian local ring. Gu and Chu showed: if \(M\) and \(N\) are finitely generated \(R\)-modules such that \(pd(M) = d < \infty\) and \(\dim N = n < \infty\), then

\[
\text{Att}_R(H^{d+n}_a(M, N)) = \{p \in \text{Ass}_RN : \text{cd}(a, M, R/p) = d + n\}.
\]

Let \(H := H^{n+d}_a(M, N)\) and suppose that \(\text{cd}(a, M, R/p) = d + n\) for all minimal prime ideals \(p\) of \(R\).

Then for all ideal \(b\) of \(R\)

\[
\overline{b} = b^{*}(H).
\]
Summary

1 Motivation
 - Rees’ Question
 - Multiplicities

2 The concept of Attached Primes
 - Secondary Representation
 - Attached Primes

3 Integral Closures
 - The Traditional One
 - Integral Closure Relative to an Artinian Module

4 Results
 - The Main Result
 - Conclusion
 - Examples

5 References
V. H. Jorge Perez and L. C. Merighe, *About a question of D. Rees on classical integral closure and integral closure relative to an Artinian module*.

References

Thank You