MATH 817 Notes

JD Nir

 $\begin{array}{c} jnir@huskers.unl.edu\\ www.math.unl.edu/\sim jnir2/817.html\\ September~16,~2015 \end{array}$

- Final version of problem set 3 is posted
- I'll have pset 2 graded by tomorrow

Recall If $N \subseteq G$, then the equivalence relation $x \sim y \Leftrightarrow xN = yN \Leftrightarrow Nx = Ny$ respects multiplication and thus $G/N := G/\sim$

Exercise: If \sim represents multiplication then \sim "comes from" some $N \subseteq G$.

 $\underline{\text{Ex}} \text{ Say } G = \langle x \rangle \text{ is cyclic.}$

What can we say about quotients of G?

$$N \leq G \Leftrightarrow N \leq G$$
 (G is abelian) and $N \leq G \Rightarrow N = \langle x^m \rangle$, some m

$$\therefore$$
 $G/N = \{N, xN, x^2N, \dots, x^{m-1}N\}$ (if $m \neq 0$) and $G/N = \langle xN \rangle$ is cyclic

.: Quotient groups of cyclics are cyclic

$$\underline{\text{Fact}} \ \# \frac{\langle x \rangle}{\langle x^m \rangle} = \begin{cases} m & |x| = \infty \\ \frac{|x|}{\gcd(m,|x|)} & |x| < \infty \end{cases}$$

$$\underline{\operatorname{Ex}} \ \mathbb{Q} = (\mathbb{Q}, +)$$

$$\mathbb{Z} \trianglelefteq \mathbb{Q}$$

$$\mathbb{Q}/\mathbb{Z} = \{ q + \mathbb{Z} \mid 0 \le q < 1, q \in \mathbb{Q} \}$$

$$q\mathbb{Z} \neq q'\mathbb{Z}$$
 for $0 \leq q < q' < 1$

$$q = \frac{m}{n} \ m, n \in \mathbb{Z}, n > 0$$

$$n(q + \mathbb{Z}) = m + \mathbb{Z} = \mathbb{Z}$$

$$\therefore [q + \mathbb{Z}] \le n \text{ in } \mathbb{Q}/\mathbb{Z}$$

$$\mathbb{Q}/\mathbb{Z} \cong \{z \mid z \in \mathbb{C}^{\times}, z^n = 1 \text{ for some } n\} \leq \mathbb{C}^{\times} \text{ via } q + \mathbb{Z} \mapsto e^{2\pi i q} \text{ (well defined since } e^{2\pi i n} = 1 \ \forall n \in \mathbb{Z} \text{)} = 0$$

$$\mathbb{R} = (\mathbb{R}, +)$$

$$\mathbb{R}/\mathbb{Z} \cong \{z \in \mathbb{C}^\times \mid ||x|| = 1\} \leq \mathbb{C}^\times$$

$$r+\mathbb{Z}\mapsto e^{2\pi ir}$$

Lagrange

Lemma
$$H \leq G$$
. $\forall x, y \in G \#(xH) = \#(yH)$ and $\#(Hx) = \#(Hy)$

(Valid even if those are infinite)

Pf Define $\alpha: xH \to yH$ by

$$\alpha(xh) = (yx^{-1})(xh) = yh, \forall h \in H$$

Define
$$\beta: yH \to xH$$
 by $\beta(yh) = xh$

Then
$$(\alpha \circ \beta)(yh) = yh \ \forall h$$

$$(\beta \circ \alpha)(xh) = xh \ \forall h. : \#xH = \#yH$$

<u>Langrange's Theorem</u> If $H \leq G$ and $\#G < \infty$ then $\#H \mid \#G$ and $\frac{\#G}{\#H} =$ the number of left cosets of H in G and the number of cosets of H in G.

Pf The left cosets of H in G partition G into subsets each of size #H.

$$G = g_1 H \cup g_2 H \cup \ldots \cup g_\ell H$$
, for some $g_1, \ldots, d_\ell \in G$ with $g_i H \cap g_j H = \emptyset \ \forall i \neq j$

By lemma, $\#g_i H = \#g_i H = \#H$

 \therefore #G = $\ell \cdot \#H$ and ℓ = the number of left cosets of H in G.

Similarly, $G = Hy_1 \cup ... \cup Hy_r$, r = # of right cosets and $\#Hy_i = \#H \ \forall i$

$$\therefore #G = r \cdot #H$$

Note: In any group H, given $H \leq G$

of left cosets of H = # of right cosers of H

$$\{xH \mid x \in G\} \overset{\text{1-1}}{\underset{\text{onto}}{\longleftrightarrow}} \{Hy \mid y \in G\}$$

$$\begin{array}{ccc} xH & \mapsto & Hx^{-1} \\ y^{-1}H & \longleftrightarrow & Hy \end{array}$$

$$xH = x'H \Rightarrow (x')^{-1}x \in H \Rightarrow H(x')^{-1} = Hx^{-1}$$

 $\underline{\mathrm{Def}}\ H \leq G, [G:H] := \# \text{ of left cosets of } H \text{ in } G \stackrel{\mathrm{note}}{=} \# \text{ of right cosets})$

It's called the index of H in G.

Lagrange: $H \leq G$, $\#G < \infty \Rightarrow \#G = \#H \cdot [G:H]$

$$([G:H] = \frac{\#G}{\#H})$$

Cor If $x \in G$ and $\#G < \infty$, then $|x| \mid \#G$

$$\underline{\mathrm{Pf}} \langle x \rangle \leq G$$
 and $\#\langle x \rangle = |x|$. Apply Lagrange.

Cor If G is a group of prime order than G is cyclic. In fact, $G = \langle x \rangle$ for any $x \in G, x \neq e$.

Prop If $H \leq G$ and [G:H] = 2 then $H \leq G$. (Valid even if $\#G = \infty$)

Pf: Pick any $g \in G \setminus H$. Then $H \cap gH = \emptyset$. So, [G:H] = 2 $G = H \cup gH$.

Likewise $G = H \cup Hg$ (by the Note).

$$\therefore gH = G \setminus H = Hg \text{ and so } gH = Hg \ \forall g \in G \setminus H$$

If
$$g \in H$$
, $gH = H = Hg$. $gH = Hg \ \forall g \in G$. $H \subseteq G$.

 $\underline{\operatorname{Ex}} \langle r \rangle \leq D_{2n}$

$$\#\langle r \rangle \stackrel{\text{Lagrange}}{\Longrightarrow} [D_{2n} : \langle r \rangle] = 2$$
$$\Rightarrow \langle r \rangle \trianglelefteq D_{2n}$$

Note If $\#G < \infty$ and p is the mallest prime divisor of #G, then if $H \leq G$ and [G:H] = p, then $H \leq G$.