MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html September 11, 2015

Defintion

Let G be a group, $S \subseteq G$ is a subset of G.

$$\begin{array}{ll} \langle S \rangle &=& \text{``subgroup of } G \text{ generated by } S\text{''}\\ &=& \bigcap_{\substack{H \leq G\\ S \subseteq H}} H \end{array}$$

If $K \leq G$ and $S \subseteq K$, then $\langle S \rangle \leq K$.

Example

If $H, K \leq G$, then $\langle H \cup K \rangle$ = the unique smallest subgroup of G that contains H and K. "Explicit" description of $\langle S \rangle$:

$$\langle S \rangle = \left\{ s_1^{e_1} s_2^{e_1} \cdots s_\ell^{e_\ell} \mid \ell \ge 0, s_i \in S, e_i \in \mathbb{Z} \right\}$$

Example

$$r, s \in D_{2n}.\langle r, s \rangle = D_{2n}$$

In general we can have $r^{e_1}s^{e_2}r^{e_3}=r^{e_1-e_3}s$ or $r^{e_1+e_3}$

Example

$$G = GL_2(\mathbb{R})$$
. Let $x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} y = \begin{pmatrix} 0 & 2 \\ 1/2 & 0 \end{pmatrix}$.

$$x^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $y^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ so $|x| = 2, |y| = 2.$

Then $\langle x, y \rangle \leq G$ and $\#\langle x, y \rangle = \infty$

$$xy = \begin{bmatrix} 1/2 & 0 \\ 0 & 2 \end{bmatrix} \in \langle x, y \rangle$$

and

$$(xy)^n = \begin{bmatrix} 1/2^n & 0\\ 0 & 2^n \end{bmatrix} \neq I_2 \ \forall n \neq 0$$

Example

Let $S = \{\text{transpositions in } S_n\} \subseteq S_n$

$$\langle S \rangle = S_n$$

Let
$$S = \{(a \ b \ c) \in S_n\}$$
. What is $\langle S \rangle = ? A_n$?

Let $H \leq G$ and $K \leq G$. Then

$$HK := \{hk \mid h \in H, k \in K\} \subseteq G$$
 subset

Lemma

If $H \subseteq N_G(K)$ or if $K \subseteq N_G(H)$ then HK = KH and $HK \le G$.

(So in this case, $HK = \langle H \cup K \rangle$

Proof

Assume $K \subseteq N_G(H) = \{g \in G \mid gHg^{-1} = H\}$. So $kHk^{-1} = H \ \forall k \in K$. If $hk \in HK$, then

$$hk = kk^{-1}hk$$

$$= k\underbrace{(k^{-1})h(k^{-1})^{-1}}_{= kk^{-1}H(k^{-1})^{-1}}_{= kH \in KH}$$

If $kh \in KH$, then $kh = \underbrace{khk^{-1}}_{H}k \in HK$

 $\therefore KH = HK$

Check $HK \leq G$:

- $e = ee \in HK \checkmark$
- $h_1k_1, h_2k_2 \in HK \Rightarrow h_1k_1(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1} = \underbrace{h_1k_1k_2^{-1}(k_2k_1^{-1})}_{\in H}(k_1k_2^{-1})h_2^{-1} \in HK$

$$\therefore HK \leq G$$

The rest holds by symmetry.

Example

Let
$$H = \langle r \rangle \leq D_{2n}$$
, $K = \langle s \rangle \leq D_{2n}$

$$K \subseteq N_G(H)$$
 since $sr^i s^{-1} = sr^i s = r^{-i} \in H$

$$\therefore HK \leq D_{2n}$$

In this example, $HK = D_{2n}$

Quotient Groups

Let G be a group. Suppose \sim is an equivalence relation on G:

- (i) $x \sim x$
- (ii) $x \sim y \Rightarrow y \sim x$
- (iii) $x \sim y$ and $y \sim z \Rightarrow x \sim z$

 \sim respects multiplication provided: if $x \sim y$, then $x \cdot z \sim y \cdot z \ \forall z \in G$ and $w \cdot x \sim w \cdot y \ \forall w \in G$.

For $x \in G$, given \sim , define $[x] = \{y \in G \mid y \sim x\} = \text{equivalence class of } X$.

For
$$x, y \in G$$
, $[x] = [y] \Leftrightarrow x \sim y$

$$x \text{ is not } \sim y \Leftrightarrow [x] \cap [y] = \emptyset$$

Lemma

If \sim respects multiplication, then the set " G/\sim " = { $[x] \mid x \in G$ } of all equivalence classes is a group under $[x] \cdot [y] := [xy]$. Moreover, the cannonical function $G \to G/\sim$ (namely, $g \to [x]$) is a surjective group homomorphism.

Proof

• The rule is well-defined (that is, independent of choices for x, y). If [x] = [x'] and [y] = [y'], then I claim [xy] = [x'y']:

$$[x] = [x'] \quad \Rightarrow \quad x \sim x'$$

$$[y] = [y'] \quad \Rightarrow \quad y \sim y'$$

$$\Rightarrow \quad xy \sim x'y \quad \text{and} \quad x'y \sim x'y'$$

$$\Rightarrow \quad xy \sim x'y'$$

$$\Rightarrow \quad [xy] \sim [x'y'] \quad \checkmark$$

- if ([x][y])[z] = [xy][z] = [(xy)z] = [x(yz)] = [x][yz] = [x]([y][z])
- [e][x] = [ex] = [x][x][e] = [xe] = [x] : $[e] = e_{G/\sim}$

• Given
$$[x] \in G/\sim$$
 $[x][x^{-1}] = [xx^{-1}] = [e] = e_{G/\sim}$ $[x^{-1}][x] = [x^{-1}x] = [e] = e_{G/\sim}$

 \therefore G/~ is a group. The map $G \to G/\sim$, $x \to [x]$ is a group homomorphism.

Example

$$G=(\mathbb{Z},+).$$
 Fix n , define \sim on G by $i\sim j\Leftrightarrow i=j \mod n$ $i\sim j\Rightarrow i+\ell\sim j+\ell$

$$\therefore$$
 \mathbb{Z}/\sim is a group. $\mathbb{Z}/\sim:=\mathbb{Z}/n=\{[0],[1],\ldots,[n-1]\}$

Definition

Let G be a group. $H \leq G$ is a subgroup.

A <u>left coset</u> of H in G is a subset of the form xH for some $x \in G$.

$$xH = \{xh \mid h \in H\}$$

A right coset of H in G is a subset of the form Hx for some $x \in G$.

<u>Lemma</u>

$$H \le G. \forall x, y \in G$$

- either xH = yH or $xH \cap yH = \emptyset$
- either Hx = Hy or $Hx \cap Hy = \emptyset$