MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html August 24, 2015

I am Mark Walker

This is Math 817.

Def: A monoid is a set M equipped with a pairing

$$M \times M \to M$$

written $(a, b) \mapsto a \cdot b = ab$

Satisfying 2 axioms:

- (1) $(a \cdot b) \cdot c = a \cdot (b \cdot c) \forall a, b, c \in M$
- $(2) \exists e \in M \text{ s.t. } e \cdot a = a = a \cdot e \forall a \in M$

<u>Lemma</u> If (M, \cdot) is a monoid, then the element e in (2) is unique:

$$e \cdot a = a = a \cdot e \ \forall a \in M + e' \cdot a = a = a \cdot e' \ \forall a \in M \Rightarrow e = e'$$

Pf: Let e, e' be as above.

Then $e \cdot e' = e' + e = e \cdot e' : e = e' \square$

Def: A group is a pair (G, \cdot) s.t. (G, \cdot) is a monoid + also

$$\bigcirc$$
 $\exists x \in G, \exists y \in G \text{ s.t. } x \cdot y = e = y \cdot x$

Lemma: In axiom (3), y is unique.

Pf: Given x, suppose xy = e = yx + xz = e = zx.

Then

$$(z \cdot x) \cdot y = e \cdot y = y$$
$$+ z \cdot (x \cdot y) = z \cdot e = z$$
$$\therefore y = z \text{ using } (1)$$

Notation $x \in G$, G group, x^{-1} = the unique elt of axiom 3.

Additive notation

+ instead of \cdot

-x instead of x^{-1}

0 instead of e

 $\underline{\mathrm{Def}}$ A group $G,\cdot)$ is $\underline{\mathrm{abelian}}$ if

$$\overbrace{(4)} \ x \cdot y = y \cdot x \ \forall x, y \in G$$

$$\overbrace{4}$$
: $n+m=m+n$

$$G(n|F) = \{n \times n \text{ matrices } A | \det A \neq 0\}$$

$$2 e = I_n = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}$$

Let $\cdot = \text{matrix mult.}$

(3) if
$$\det(A) \neq 0$$
, A^{-1} exists.

In fact,
$$A^{-1} = \frac{1}{\det(A)} A^{\operatorname{adj}}$$

$$(A^{\mathrm{adj}}A = AA^{\mathrm{adj}} = \det(A)I_n)$$

 \therefore $(G(n|F), \cdot)$ is a group, It's not abelian unless n = 1.

$$(G(1|\mathbb{R}) = \mathbb{R} \setminus \{0\})$$

$$(4)$$
 $(\frac{\mathbb{Z}}{n},+)$ $\frac{\mathbb{Z}}{n}=\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$ is an abelian group

$$(5) ((\frac{\mathbb{Z}}{n})^x, \cdot) (\frac{\mathbb{Z}}{n})^x = \{\overline{j} \in \frac{\mathbb{Z}}{n} | \gcd(j, n) = 1\} \text{ ditto}$$

6 $n \in \mathbb{N}, n \geq 3$ $D_{2n} = \text{group of symmetries of a regular } n\text{-sided polygon in } \mathbb{R}^2$

 $\cdot = composition$

 $P_n = \text{regular } n\text{-gon, centered at } (0,0), \text{ symmetric about } y\text{-axis}$

 $D_{2n} = \{g : \mathbb{R}^2 \to \mathbb{R}^2 | g \text{ is an isometry } (g \text{ preserves distance} + \text{angles}) \text{ s.t. } g(P_n) = P_n \}$ (D_{2n}, \cdot) is a group

· is a pairing on D_{2n} \checkmark

- (1) comp is assoc.
- $ar{2}$ the identity map on \mathbb{R}^2 is e
- \bigcirc isometries are 1-1 and onto

So if $g \in D_{2n}, g^{-1} : \mathbb{R}^2 \to \mathbb{R}^2$ exists as a function. $g^{-1} \in D_{2n}$

Two obvious elts on D_{2n} :

r= rotation of \mathbb{R}^2 (centered at (0,0)) by $\frac{2\pi}{n}$ radians, counter-clockwise

s =reflection about y-ais

 $r, s \in D_{2n}$

•
$$r^n = e \Rightarrow r^{n-1} = r^{-1}$$

•
$$s^2 = e \Rightarrow s^{-1} = s$$

•
$$srs = ?$$

$$srs = r^{-1}$$
 and $srsr = e$ and $sr = r^{-1}s$