MATH 817 Notes

JD Nir

jnir@huskers.unl.edu

www.math.unl.edu/ \sim jnir2/817.html November 2, 2015

Prop If $H \subseteq G$, $K \subseteq G$ and $H \cap K = \{e\}$, then the function $\varphi : H \times K \to G$ defined by $\varphi(h, k) = h \cdot k$ is a 1-1 group homomorphism with image $H \cdot K$. In particular, if also $H \cdot K = G$, then $H \times K \cong G$.

 $\underline{\underline{\operatorname{Ex}}}\; G = \langle x \rangle, |x| = n, n = m \cdot \ell, \gcd(m,\ell) = 1. \text{ Let } a = x^m, b = x^\ell. \ \langle a \rangle \unlhd G, \langle b \rangle \unlhd G, \langle a \rangle \cap \langle b \rangle = \{e\}, \\ \overline{\operatorname{since}}\; \gcd(m,\ell) = 1.$

 $\therefore \varphi : \langle a \rangle \times \langle b \rangle \to G$ is a 1-1 group homomorphism.

$$\#(\langle a \rangle \times \langle b \rangle) = n :: \varphi \text{ is onto and } G \cong \langle a \rangle \times \langle b \rangle$$

ex
$$\mathbb{Z}/60 \cong \mathbb{Z}/15 \times \mathbb{Z}/4 \cong \mathbb{Z}/3 \times \mathbb{Z}/5 \times \mathbb{Z}/4 \cong \mathbb{Z}/3 \times \mathbb{Z}/20$$

 $\cong \mathbb{Z}/12 \times \mathbb{Z}/5$

Chinese Remainder Theorem: $\mathbb{Z}/n = \mathbb{Z}/m \times \mathbb{Z}/\ell$ if $n = m\ell, \gcd(m, \ell) = 1$

Pf: Say $\varphi(h_1, k_1) = \varphi(h_2, k_2)$. So, $h_1 k_1 = h_2 k_2 \Rightarrow h_2^{-1} h_1 = k_2 k_1^{-1} \in H \cap K = \{e\}$.

$$h_1 = h_2 \text{ and } k_1 = k_2$$

$$\therefore \varphi$$
 is 1-1 [I've only used $H \cap K = \{e\}, H \leq G$ and $K \leq G$ only.]

To show φ is a group homomorphism, first we show $h \cdot k = k \cdot h, \forall h \in H, k \in K$.

Consider $[h, k] = hkh^{-1}k^{-1} \in H$ since $H \subseteq G$ and $[h, k] \in K$ since $K \subseteq G$.

$$\therefore$$
 $[h, k] = e$ and so $hk = kh$.

$$\varphi((h_1, k_1) \cdot (h_2, k_2)) = \varphi((h_1 h_2, k_1 k_2)) = h_1 h_2 k_1 k_2$$
 and $\varphi((h_1, k_1)) \cdot \varphi((h_2, k_2)) = h_1 k_1 \cdot h_2 k_2 = \varphi((h_1, k_1) \cdot (h_2, k_2))$ since $k_1 h_2 = h_2 k_1$.

$$\underline{\text{Note}} \text{ If } H \unlhd G, K \unlhd G, H \cap K = \{e\}, HK = G, \text{ then } G/H \xleftarrow{\cong} K \text{ and } G/K \xleftarrow{\cong} H.$$

Moreover, using these isomorphisms,

$$G \xrightarrow{\cong} G/K \times G/H \cong H \times K$$
$$g \mapsto (gK, gH)$$

$$3 \cdot 5 = 15$$

$$\underline{\underline{\operatorname{Ex}}} \ G = \left\{ \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \mid x \in \mathbb{R} \setminus \{0\} \,, y \in \mathbb{R} \right\} \leq \underset{\nwarrow \text{ you check}}{GL_2(\mathbb{R})}$$

I claim
$$G \cong D \times U$$
. Let $D = \left\{ \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \mid x \in \mathbb{R} \setminus \{0\} \right\}, \ U = \left\{ \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \mid y \in \mathbb{R} \right\} \ (U = \text{unipotent})$

 $D \leq G, U \leq G$ are easy to check

 $D \subseteq G$ since $D \subseteq Z(G)$.

$$D \cdot U = G : \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \stackrel{?}{=} \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & y/x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix}$$

 $U \subseteq N_G(U)$

$$\underline{ \text{Claim} } \ D \subseteq N_G(U) : \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x^{-1} & 0 \\ 0 & x^{-1} \end{pmatrix}$$

$$D\cap U=\{e_G\}$$

 $\therefore G \cong D \times U$ by the prop

 $NoteD \cong \mathbb{R}^{\times}$

$$\begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & y' \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y+y' \\ 0 & 1 \end{pmatrix}$$

Suppose $H \subseteq G$, $K \subseteq G$ (not necessarily normal), $H \cap K = \{e\}$, $H \cdot K = G$. Then the proof of the proposition sow:

$$\varphi: H \times K \to G$$

is 1-1 and onto.

But it need not be a group homomorphism:

$$\varphi((h_1, k_2) \cdot (h_2, k_2)) = h_1(h_2)k_1k_2$$

$$\varphi((h_1, k_1)) \cdot \varphi((h_2, k_2)) = h_1 k_1 h_2 k_2 = \begin{cases} \varphi(h_1 k_1 h_2 k_1^{-1}, k_1 k_2) \\ \| h_1(k_1 h_2 k_1^{-1}) k_1 k_2 \end{cases}$$

 φ is a group homomorphism $\Leftrightarrow k \subseteq N_G(H) \Rightarrow K \subseteq G$

Idea! Make φ into a group homomorphism by redefining multiplication on $H \times K$ to be

$$(h_1, k_1) * (h_2, k_2) := (h_1 k_1 h_2 k_1^{-1}, k_1 k_2) \subseteq H \times K$$

Say K is a group that acts on another group H via automorphisms; i.e., there is a group homomorphism $\rho: K \to \operatorname{Aut}(H)$.

Then we define a group $H \rtimes_{\rho} K = H \rtimes K$ as follows:

The underlying set is $H \times K$

$$(h_1, k_1) \cdot (h_2, k_2) = (h_1 h_2^{k_1}, k_1 k_2), \text{ where } h_2^{k_1} := \rho(k_1)(h_2).$$