MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html

November 18, 2015

Def Quotient Spaces

W is a subspace of $V \Rightarrow$ the quotient group V/W is also a vector space via $\lambda |v + W| = \lambda v + W$.

 $\underline{\mathrm{Def}}\ V = F\text{-vector space}$

 $\dim V = \dim_F V = \#B$ where B is any basis

Prop If W is a subspace of V, $\dim V = \dim W + \dim(V/W)$.

<u>Pf</u>: Pick a basis B of W and a basis \overline{C} of V/W. For each element of \overline{C} pick an element in V that represents that coset, and let $C \subseteq V$ be the set of all these choices.

So,
$$\overline{C} = \{v + W \mid v \in C\}$$
 and $v + W \neq v' + W$ for all $v, v' \in C$ with $v \neq v'$.

 $\dim V = \#(B \cup C)$

Claim: $B \cap C = \emptyset$ and $B \cup C$ is a basis of V. Granting this,

 $= \#B + \#\underline{C}$

= $\#B + \#\overline{C} = \dim W + \dim V/W$

pf of claim

- If $c \in C \cap B$, then $c + W \in \overline{c}$ and $c + W = 0_{V/W} \Rightarrow \Leftarrow$
- Span $(B \cup C) = V$:

Pick
$$v \in V$$
.
$$v + W \stackrel{\downarrow}{=} \sum_{c \in C} \lambda_c(c + W)$$
$$= \left(\sum_{c \in C} \lambda_c \cdot c\right) + W$$

$$v - \sum_{c} \lambda_c \cdot c \in W$$

$$\therefore v - \sum_{c} \lambda_c \cdot c = \sum_{b \in B} \mu_b \cdot b$$

$$v \in \operatorname{Span}(B \cup C).$$

• linearly independent: Say $\sum_{b \in B} \mu_b \cdot b + \sum_{c \in C} \lambda_c \cdot c = 0$. Then since $B \subseteq W$, we set

$$0 + \sum_{C} \lambda_c(c + W) = 0_{V/W}$$

since \overline{C} is linerally independent, $\lambda_c = 0 \ \forall c \in C$.

Then $\sum_{b \in B} \mu_b \cdot b = 0 \Rightarrow \mu_b = 0 \ \forall b \in B$, since B is linearly independent.

Prop Let $\varphi: V \to W$ be a linear transformation of vector spaces V and W.

- (1) ker φ is a subspace of V.
- (2) im φ is a subspace of W

 $\operatorname*{Ism}_{\text{Isom.}} \underbrace{3}^{\text{1st}} V/\ker \varphi \cong \operatorname{im} \varphi, \text{ as vector spaces, via } v + \ker \varphi \mapsto \varphi(v).$

Rank-Nullity Theorem 4 dim $V = \dim(\ker \varphi) + \dim(\operatorname{im} \varphi)$.

5 If dim $V < \infty$ and dim $W < \infty$, \exists bases $B = (v_1, \ldots, v_n)$ and $C = (w_1, \ldots, w_m)$ of V + W such that

$$M_B^C(\varphi) = \begin{bmatrix} I_r & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n}, I_r = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}_{r \times r}, \text{ some } r.$$

(6) Given an $m \times n$ matrix A, A is equivalent to

$$\begin{bmatrix} I_r & 0 \\ \hline 0 & 0 \end{bmatrix}_{m \times n}, \text{ some } r.$$

 $\underline{\text{Pf}}$: 1 and 2 are easy

- (3) We know such an isomorphism of groups exists. Now observe $\varphi(\lambda v) = \lambda \varphi(v) \Rightarrow$ this isomorphism is also f-linear.
- (4) Follows from 3 and previous result.
- 5 Pick a basis (w_1, \ldots, w_r) of im φ . For each i, pick $v_i \in V$ such that $\varphi(v_i) = w_i$. Pick a basis $v_{r+1}, v_{r+2}, \ldots, v_\ell$ of ker φ . Then the proof of the previous proposition shows that

$$B = (v_1, v_2, \dots, v_r, v_{r+1}, \dots, v_{ell})$$

form a basis of V. (Note $\ell = \dim V = n$)

Extend $w_1, ..., w_r$ to a basis $C = (w_1, w_2, ..., w_r, w_{r+1}, ..., w_m)$ of W.

Observe
$$\varphi(v_1) = \begin{cases} w_i & i \le r \\ 0 & i > r \end{cases}$$
.

The equation follows.

(6) Apply (5) to $T_A: F^n \to F^m$.

Cor $\varphi:V\to W$ linear transformation, dim $V=\dim W<\infty$. The following are equivalent:

- $(1) \varphi$ is an isomorphism
- $(2) \varphi$ is 1-1
- \bigcirc \bigcirc \bigcirc is onto
- (4) \forall bases of V, $\varphi(B)$ is a basis of W
- $1 \Rightarrow 4$ clear
- $(4) \Rightarrow (3)$ clear, since im $\varphi \supseteq \operatorname{Span}(\varphi(B)) = W$
- $(3) \Rightarrow (2)$ By Proposition (4), dim(ker φ) = $0 \Rightarrow \ker \varphi = 0 \Rightarrow \varphi$ is 1-1
- $\textcircled{2}\Rightarrow \textcircled{1}$ By Proposition 4, $\dim(\operatorname{im}\varphi)=\dim V=\dim W.$ $\overline{}$: $\operatorname{im}\varphi=W$