MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html November 16, 2015

Let B be a basis of an F vector space V, and let W be any F-vector space. Then the function

$$\operatorname{Hom}_F(V,W) \to \operatorname{Functions}(B,W)$$

given by $\varphi \mapsto \varphi|_B$ is bijective.

Say $B = (v_1, v_2, \dots, v_n)$ is a basis of V and $C = (w_1, w_2, \dots, w_m)$ is a basis of W.

Say
$$B = (v_1, v_2, \dots, v_n)$$
 is a basis of V and $C = (w_1, w_2, \dots, w_m)$.

Hom_F $(V, W) \xrightarrow{\text{i-1}} \text{Functions}(B, W) \xrightarrow{\text{i-1}} \text{onto} Mat_{m \times n}(F)$

$$(g : B \to W) \mapsto \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & \vdots & & \vdots \\ \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Notation

• Given V, W and B, C as above, for $\varphi \in \operatorname{Hom}_F(V, W)$ $M_B^C(\varphi) := [a_{ij}]_{m \times n}, \varphi(v_i) = a_{1i}w_1 + a_{2i}w_2 + a_{2i}w_3 + a_{2i}w_4 +$ $a_{2i}w_2 + \cdots + a_{mi}w_m$.

• For
$$v \in V$$
, $[v]_B = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}$ where $v = \lambda_1 b_1 + \dots + \lambda_n b_n$

Prop Let V, W, B, C be as above.

 $\underbrace{1}_{\begin{subarray}{c} \begin{subarray}{c} \begin{subarray}{$

$$\sum \lambda_i v_i \leftrightarrow \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{bmatrix}$$

- (2) There is a bijection $\operatorname{Hom}_F(V,W) \cong \operatorname{Mat}_{m \times n}(F)$ given by $\varphi \mapsto M_B^C(\varphi)$
- $(3) \forall v \in V, \forall \varphi \in \operatorname{Hom}_F(V, W)$

$$[\varphi(v)]_C = M_B^C(\varphi) \cdot [v]_B$$

(4) If $A = (u_1, u_1, \dots, u_p)$ is a basis of another F-vector space U, then $\forall \varphi \in \text{Hom}_F(V, W), \forall \psi$: $\operatorname{Hom}_F(U,V)$,

$$\operatorname{Mat}_{A}^{C}(\varphi \circ \varphi) = \operatorname{Mat}_{B}^{C}(\varphi) \cdot \operatorname{Mat}_{A}^{B}(\psi)$$
matrix multiplication

Note A, B, C are ordered bases in this proposition.

Cor 1: Matrix multiplication is associative.

Cor 2: $\operatorname{Hom}_F(V, V) \cong \operatorname{Mat}_{n \times n}(F)$ and also $\operatorname{Aut}_F(V) \cong \operatorname{GL}_n(F)$ isomorphism of groups.

Similarity: Let B, B' are two ordered bases of V ($\#B = \#B' < \infty$). Let $P = M_B^{B'}(\mathrm{id}_v)$, $\mathrm{id}_V : V \to V$ is identity map.

Then

- P is invertible and $P^{-1} = M_{B'}^B(\mathrm{id}_V)$. Why? $M_{B'}^B(\mathrm{id}_v) \cdot M_B^{B'}(\mathrm{id}_v) \stackrel{\mathrm{Prop}}{=} M_B^B(\mathrm{id}_v) = I_n$ and $M_B^{B'}(\mathrm{id}_v) \cdot M_{B'}^B(\mathrm{id}_v) = I_n$
- For any $\varphi \in \operatorname{Hom}_F(V, V)$,

$$P \cdot M_B^B(\varphi) \cdot P^{-1} = M_B^{B'}(\mathrm{id}_V) \cdot M_B^B(\varphi) \cdot M_{B'}^B(\mathrm{id}_V)$$
$$= M_B^{B'}(\mathrm{id}_V \cdot \varphi) \cdot M_{B'}^B(\mathrm{id}_V)$$
$$= M_{B'}^{B'}(\mathrm{id}_V \circ \varphi \circ \mathrm{id}_V)$$
$$= M_{B'}^{B'}(\varphi)$$

So, similarity of matricies amounts to a change of basis:

Given base B, B' of V, if $\varphi \in \text{Hom}_F(U, V)$, then

$$M_B^B(\varphi) \sim M_{B'}^{B'}(\varphi)$$
similarity

Equivalence Let V, W be two vector spaces, say B, B' are two ordered bases of V and C, C' are two ordered bases of W.

$$\forall \varphi \in Q \cdot \operatorname{Hom}_F(V, W), M_B^C(\varphi) \cdot P = M_{B'}^{C'}(\varphi)$$

where
$$P = M_{B'}^B(\mathrm{id}_V)$$

 $Q = M_C^{C'}(\mathrm{id}_w)$.

If A, A' are two $m \times n$ matricies, then A and A' are equivalent if

$$\underset{m \times n}{A'} = Q \underset{m \times n}{A} P$$

for some $Q \in GL_n(F), P \in GL_n(F)$.

Note: $\forall Q \in GL_n(F)$, QA is obtained from A via element row operations.

 $\forall P \in GL_n(F), AP$ is obtained from A via elementary column operations.

 $\underline{\mathrm{Def}}$ Say W is a subspace of a F-vector space V then $V/W = \frac{(V,+)}{(W,+)}$ is a vector space via $\lambda \cdot (v+W) := \lambda v + W$.