MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html October 20, 2015

Exam Tuesday:

- $\frac{1}{2}$ will be taken from list of 12 problems (do 2 of 3 that I list)
- $\frac{1}{2}$ will be new

We can devote Monday to review.

 $\underline{\mathrm{Def}}$ An automorphism of a group G is an isomorphism from G to G.

Aut(G) = the set of all automorphisms of G.

<u>Lemma</u> $\operatorname{Aut}(G) \leq \operatorname{Perm}(G)$

Pf Easy.

If G and N are groups, an action of G on N (as a set) is given by a group homomorphism $\rho: G \to \operatorname{Perm}(N)$.

If $\operatorname{im}(\rho) \subseteq \operatorname{Aut}(N) \leq \operatorname{Perm}(N)$ we say G acts on N via automorphisms.

Explicitly,

$$\begin{array}{l} \text{action of } G \\ \text{on } N \text{ via} \\ \text{automorphism} \end{array} \left\{ \begin{array}{l} \underbrace{ \left(\begin{array}{c} 1 \\ 2 \end{array} g' \cdot (g \cdot n) = (g'g) \cdot n \\ 2 \end{array} \right\} \text{action of } G \text{ on } N \text{ (as a set)} \\ \underbrace{ \left(\begin{array}{c} 3 \\ 2 \end{array} g \cdot (nn') = (g \cdot n)(g \cdot n') \end{array} \right\} \forall g \in G, n, n' \in N }_{\text{product in } N \nearrow}$$

Better notation: $n^g = g \cdot n$

$$(1) (n^g)^{g'} = n^{g'g} (n^g)^{g'} = g' \cdot (g \cdot n) = (g'g) \cdot n = n^{g'g}$$

$$(2) n^e = n$$

$$(3) (nn')^g = (n^g)(n'^g)$$

Main Example Assume $N \subseteq G$. Then G acts on N via conjugation:

 $\forall n \in N, g \in G, n^g := gng^{-1} \in N \text{ (since } N \leq G)$

$$\bullet \ (n^g)^{g'} = (gng^{-1})^{g'} = g'gng^{-1}(g')^{-1} = g'gn(g'g)^{-1} = n^{g'g} \ \checkmark$$

•
$$n^e = ene^{-1} = n \checkmark$$

$$\bullet \ (nn')^g = gnn'g^{-1} = gng^{-1}gn'g^{-1} = n^g(n')^g \ \checkmark$$

So, the conjugation action of G on N is an action via automorphisms.

. : We get a homomorphism $\rho:G\to \operatorname{Aut}(N)$

You can write it as $\rho(g) = \varphi_g$, where $\varphi_g \in \operatorname{Aut}(N)$ is defined by $\varphi(g) = n^g = gng^{-1}$

Examples: $n \neq 0$ Aut $(\mathbb{Z}/n) \stackrel{\bigcirc}{\cong} (\mathbb{Z}/n)^{\times}$

where
$$(\mathbb{Z}/n)^{\times} = (\{\bar{\ell} \mid \ell \in \mathbb{Z}, \gcd(\ell, n) = 1\}, \cdot)$$

 $(\bar{\ell} = \text{class mod } n)$

Proof of (1): Define $\Theta: (\mathbb{Z}/n)^{\times} \to \operatorname{Aut}(\mathbb{Z}/n)$ by

$$\Theta(\overline{\ell}) = \mu_{\overline{\ell}}, \text{ where } \mu_{\overline{\ell}} : \mathbb{Z}/n \to \mathbb{Z}/n$$

is
$$\mu_{\overline{\ell}}(\overline{m}) = \overline{\ell} \cdot \overline{m} = \overline{\ell m}$$

To check:

- $\Theta(\overline{\ell})$ is independent of representation.
- $\mu_{\overline{\ell}}$ really is an automorphism of \mathbb{Z}/n (uses $\gcd(\ell,n)=1)$
- Θ is a homomorphism of groups: $\Theta(\overline{\ell}_1\overline{\ell}_2) = \Theta(\overline{\ell}_1) \circ \Theta(\overline{\ell}_2)$ $\Leftrightarrow \mu_{\overline{\ell}_1} \circ \mu_{\overline{\ell}_2} = \mu_{\overline{\ell_1\ell_2}} : \overline{\ell}_1 \cdot (\overline{\ell}_2 \cdot \overline{m}) = \overline{\ell_1 \cdot \ell_2} \cdot \overline{m} \checkmark$
- Θ is 1-1: $\Theta(\overline{\ell}_1) = \Theta(\overline{\ell}_2) \Rightarrow \mu_{\overline{\ell}_1} = \mu_{\overline{\ell}_2} \Rightarrow \overline{\ell}_1 \cdot \overline{1} = \overline{\ell}_2 \cdot \overline{1} \in \mathbb{Z}/n$ $\Rightarrow \overline{\ell}_1 = \overline{\ell}_2 \in \mathbb{Z}/n$ $\Rightarrow \overline{\ell}_1 = \overline{\ell}_2 \in (\mathbb{Z}/n)^{\times}$
- Θ is onto: If $\alpha \in \operatorname{Aut}(\mathbb{Z}/n)$, I need to show $\alpha = \mu_{\overline{\ell}}$, some $\overline{\ell}$. Let $\overline{\ell} = \alpha(\overline{1})$. If $0 \le m \le n-1$, then $\alpha(\overline{m}) = \alpha\left(\underbrace{\overline{1} + \overline{1} + \dots + \overline{1}}_{m}\right) = \underbrace{\alpha(\overline{1} + \dots + \alpha(\overline{1})}_{m} = \underbrace{\overline{\ell} + \dots + \overline{\ell}}_{m} = \mu_{\overline{\ell}}(\overline{m})$

Finally, need to show $\gcd(\ell, n) = 1$. α is onto $\Rightarrow \mu_{\overline{\ell}}(\overline{m}) = \overline{1}$, some m. $\therefore \overline{\ell m} = \overline{1} \Rightarrow 1 = \ell m + an$, some a.

Note
$$n \geq 2$$
 # Aut(\mathbb{Z}/n) = # { $\ell \mid 1 \leq \ell \leq n-1, \gcd(\ell, n) = 1$ } = $\varphi(n)$

If p is prime then $\# \operatorname{Aut}(\mathbb{Z}/p) = p - 1$

<u>Fact</u>: If p is prime $(\mathbb{Z}/p)^{\times}$ is a cyclic group (of order p-1).

e.g. $(\mathbb{Z}/17)^{\times}$ is cyclic of order 16.

In fact $x = \overline{3}$ generates:

 $\alpha = \mu_{\overline{\ell}}$.

$$|x| \ge 9 \Rightarrow |x| = 16$$

Application If #G = pq, p and q are prime, and $p \leq q$ and $p \nmid q - 1$, then G is abelian.

E.g. $\#G = 33 \Rightarrow G$ is abelian

Proof:

- If p = q, we already did this
- p < q. If #Z(G) = p or q, G/Z(G) is cyclic $\Rightarrow G$ abelian $\Rightarrow \Leftarrow$ It remains to prove #Z(G) = 1 is impossible.

Claim $\exists x, y \in G$ such that |x| = q and |y| = p. (True by Cauchy)

Let $H = \langle x \rangle$. #H = q [G:H] = p

- $\therefore H \leq G$.
- \therefore G acts on H via conjugation and this action is via automorphisms of H:

 $\exists \text{ group homomorphism } \rho: G \to \operatorname{Aut}(H) \cong \operatorname{Aut}(\mathbb{Z}/q), \, \# \operatorname{Aut}(H) = q-1.$

 $\#\operatorname{im}(\rho)\mid q-1$ and $\#\operatorname{im}(\rho)\mid pq$

But gcd(q-1,pq)=1

- $\therefore \#\operatorname{im}(\rho) = 1$
- $\therefore \ \forall g \in G, gxg^{-1} = x. \ y \in G \setminus H$

 $G = \langle x, y \rangle$ and xy = yx.

 $\therefore G$ is abelian.