MATH 817 Notes

JD Nir

 $\begin{array}{c} jnir@huskers.unl.edu\\ www.math.unl.edu/\sim jnir2/817.html\\ October~5,~2015 \end{array}$

Exam Options

- (a) Any two hour interval contains in [8:15am, 5:00pm] on Tuesday October 13
- (b) Wed night, October 14, with proctor
- (c) In class Wednesday and Friday, October 14th and October 16th, with a proctor on Friday.

 $G = \{ \text{rotational symmetries of a dodecahedron} \}$

 \exists 4 cubes inscribed in dodecahedron.

G acts on $\{C_1, C_2, C_3, C_4, C_5\}$

 G_{C_1}

#H = 12

 $\rho: G \to S_5$

Let $\sigma \in S_n$. $G := \langle \sigma \rangle \leq S_n$.

 S_n acts on $\{1, 2, \dots, n\} \Rightarrow G$ acts on $\{1, 2, \dots, n\}$

E.g. $\sigma = (2\ 3\ 4)(5\ 6) \in S_7$

 $G = \langle \sigma \rangle$.

What are the orbits of the action of G on $\{1, 2, 3, \ldots, 7\}$?

$$\{1\}, \{2, 3, 4\}, \{5, 6\}, \{7\}$$

If $\sigma = \sigma_1 \circ \cdots \circ \sigma_m$ is the disjoint decomposition of σ and $\sigma_i = (a_{i1} \ a_{i2} \ \cdots \ a_{i\ell_i}), \ell_i \geq 2 \ \forall i$, then $(\ell_1, \ell_2, \dots, \ell_m) = \text{list of orbits lengths of size at least 2 for the action of } \langle \sigma \rangle \text{ on } \{1, \dots, n\}.$

So, $(\ell_1, \ell_2, \dots, \ell_m)$ is uniquely determined by σ .

G acts on itself via conjugation:

$$X = G$$

$$g \bullet x := gxg^{-1} \ g \in G, x \in X = G.$$

$$\bullet g_1 \bullet (g_2 \bullet x) = g_1 \bullet (g_2 x g_2^{-1})$$

$$= g_1 g_2 x g_2^{-1} g_1^{-1}$$

$$= (g_1 g_2) \bullet x \checkmark$$

$$\bullet \ e \bullet x = x \ \checkmark$$

The stabilizer of x is ... $C_G(x) =$

$$\left\{g\mid gxg^{-1}=x\right\}$$

The orbits are conjugacy classes.

<u>Prop</u> For any $x \in G$, # of elements of G that are conjugate to $x = [G : C_G(x)]$

Pf Apply LOIS.

 $\underline{\operatorname{Ex}} S_{2n}$, n odd

$$r \in D_{2n}$$

$$srs^{-1} = srs = r^{-1}$$

 $\therefore r^{-1}$ is conjugate to $r(r^{-1} \sim r)$

$$C_G(f) \supset \langle r \rangle [D_{2n} : \langle r \rangle] = 2$$

$$\Rightarrow [D_{2n}:C_G(r)]=X$$
 or 2

$$[D_{2n}:C_G(x)]=2$$

 $\{r, r^{-1}\}$ is a conjugacy class

So are
$$\{r^2, r^{-2}\}, \{r^3, r^{-3}\}, \dots, \{r^{\frac{n-1}{2}}, r^{\frac{n+1}{2}}\}$$

$$r^{-3} = r^{n-3}$$

$$rsr^{-1} = sr^{-2}$$
 : $s \sim sr^{-2}$

$$srs = r^{-1}$$

$$\Downarrow$$

$$\begin{array}{rcl} r(sr^{-2})r^{-1} & = & rsr^{-1} \cdot r^{-2} \\ & = & sr^{-4} \end{array}$$

$$s \sim sr^{-2} \sim sr^{-4} \sim sr^{-6} \sim sr^{-8} \sim \cdots$$

Since n is odd, the conjugacy class of s is $\{s, sr, \dots, sr^{n-1}\}$

$$\neq C_{D_{2n}}(s) = 2 C_{D_{2n}}(s) = \{e, s\}$$

$$\{r, r^{-1}\}, \{r^2, r^{-2}\}, \dots, \{r^{\frac{n-2}{2}}, r^{\frac{n+2}{2}}\}, \{r^{\frac{n}{2}}\}$$
 are conjugacy classes.

$$C_{D_{2n}}(s) = \left\{ e, s, r^{\frac{n}{2}}, sr^{\frac{n}{2}} \right\}$$

$$\{s, sr^2, sr^4, \dots, sr^{n-2}\}$$
 and $\{sr, sr^3, \dots, sr^{n-1}\}$ are conjugacy classes

 $\underline{\operatorname{Ex}} S_n$

conjugacy classes are given by cycle structures $[\sigma] := \text{conjugacy classes of } \sigma, \sigma \in S_n$

$$S_4: [e], [(1\ 2)], [(1\ 2\ 3)], [(1\ 2)(3\ 4)], [(1\ 2\ 3\ 4)]$$
 sizes: 1 6 8 3 6

Theorem [Class Equation] Let G be a finite group. Let g_1, g_2, \ldots, g_m be a complete, non-repetitive list of conjugacy classs representatives that are not central. Then

$$\#G = \#(Z(G)) + \sum_{i=1}^{n} [G : C_G(g_i)]$$

Proof Apply LOIS to action of G in G by conjugation

 $\underline{\operatorname{Ex}}\left(1\right)D_{2n}, n \text{ odd}$

$$2n = 1 + \underbrace{2 + 2 + \dots + 2}_{\frac{n-1}{2}} + n$$

 \bigcirc S_{2n}, n even:

$$2n = 2 + \underbrace{2 + \dots + 2}_{\frac{n-2}{2}} + \frac{n}{2} + \frac{n}{2}$$

$$3 S_4: 24 = 1 + 6 + 8 + 3 + 6$$

Theorem If $\#G = p^r$, p = prime, then $Z(G) \neq \{e\}$.

Pf:
$$p^r = \#G = \#Z(G) + \sum_{i=1}^m [G : C_G(g_i)]$$

 $C_G(g_i) \stackrel{<}{=} G \Rightarrow [G:C_G(g_i)]$ is divisible by p, using Lagrange.

$$\therefore p \mid \#Z(G) \text{ and } \#Z(G) \geq 1.$$

$$\therefore \#Z(G) \ge p.$$