MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html October 28, 2015

Recall: If G is a group and #G = 30, then

- $\exists a \in G \ |a| = 15 \text{ and so } N := \langle a \rangle \trianglelefteq G.$
- $\exists b \in G$ such that |b| = 2. It exists by Cauchy and is not in $\langle a \rangle$ by Lagrange.
- Let $\rho: G \to \operatorname{Aut}(N)$ be the group homomorphism associated to the conjugation action of G on N. Then

$$\operatorname{Aut}(N) \cong_{(*)} (\mathbb{Z}/15)^{\times}$$

and $\rho(b)$ corresponds under (*) to j=1,4,11 or 14. $(|b|=2\Rightarrow |\rho(b)|=1$ or 2)

So, since $(\mathbb{Z}/15)^{\times} \cong \operatorname{Aut}(N)$ via $j \mapsto (a \mapsto a^j)$: $bab^{-1} = bab = a^j$, j = 1 or 4 or 11 or 14. E.g.

- If j = 1, ba = ab : $G \cong \mathbb{Z}/30$, $G = \langle ab \rangle$
- If $j = 14 \equiv -1(15), bab^{-1} = a^{14} = a^{-1}$. : $G \cong D_{30}$

<u>Summary</u>: $\#G = 30 \Rightarrow G = \langle a, b \rangle, |a| = 15, |b| = 2, bab = a^j, j = 1, 4, 11, 14.$ And if $j = 1, G \cong \mathbb{Z}/30$ and if $j = 14, G \cong D_{30}$.

Theorem [We won't prove it] Given symbols x_1, x_2, \ldots, x_n and "words" R_1, \ldots, R_m where each R_i has the form $x_{i_1}^{e_1} \cdot x_{i_2}^{e_2} \cdots x_{i_\ell}^{e_\ell}, i_j \in \{1, \ldots, n\}$ and $e_j \in \mathbb{Z}$, \exists a group $U = \langle x_1, \ldots, x_n \mid R_1, \ldots, R_m \rangle$ such that

- (1) U is generated by $x_1, \ldots, x_n \in U$
- $(2) R_i = e \text{ in } U$
- (3) Given any group G and elements $g_1, \ldots, g_n \in G$ so that $R_i(g_1, \ldots, g_n) = e$ in G, then $\exists!$ group homomorphism $\varphi: U \to G$ with $\varphi(x_i) = g_i$.

e.g.
$$\langle x,y \mid x^{15}, y^2, yxyx^{-4} \rangle$$

$$\underset{yxy^{-1}=x^4 \Leftrightarrow yx=x^4y^{-1}}{\updownarrow}$$

 $\#U \le 30$: Since $yx = x^4y^{-1}$, every element in U can be written as x^iy^j , $i, j \in \mathbb{Z}$. Since $x^{15} = e, y^2 = e$, we can take $0 \le i \le 14$ and $0 \le j \le 1$

We can't yet show #U = 30.

 $G = \langle a, b \rangle$ By Theorem, \exists group homomorphism $\varphi : U \to GGG$, where $U = \langle x, y \mid x^{15}, y^2, yxyx^{-j} \rangle$ and $\varphi(x) = a$ and $\varphi(y) = b$.

- φ is onto because a, b generate H and are in im φ .
- $\#U \le 30$

•
$$\#G = 30$$

 $\therefore \varphi$ is an isomorphism (pigeonhole).

$$G \cong \langle x, y \mid x^{15}, y^2, yxyx^{-j} \rangle$$

$$\varphi:U\to G$$

 $\operatorname{im} \varphi \supset \langle a, b \rangle$

Since $a, b \in \operatorname{im} \varphi$, $\langle a, b \rangle \subseteq \operatorname{im} \varphi$ since $\operatorname{im} \varphi \leq G$.

$$\begin{array}{l} \langle x,y \mid x^{15},y^2,yxyx^{-1}\rangle \\ \langle x,y \mid x^{15},y^2,yxyx\rangle \end{array} \text{ have order 30. }$$

j = 4 and 11 are unsettled.

Prop $\#G = p^2q$, p and q are primes $\Rightarrow G$ is solvable.

Pf ETS G is not simple, since we know groups of order p, pq, p^2 are solvable. (If $N \leq G, N, G/N$ are solvable $\Rightarrow G$ is solvable.)

- $p = q \Rightarrow Z(G) \neq \{e\} \checkmark$
- p > q: $n_p \equiv 1 \pmod{p}$ and $n_p \mid q \Rightarrow n_p = 1$. $\therefore \exists P \triangleleft G, \#P = p^2$.
- $p < q \ n_q \equiv 1 \pmod{q}$ and $n_q \mid p^2 \dots n_q = 1$ or p or p^2 .
 - If $n_1 = 1$, done since $\exists Q \triangleleft G, \#Q = q$.
 - $-n_q = p$ is not possible $(p \not\equiv 1 \pmod{q})$
 - $-n_q = p^2$. So, $p^2 \equiv 1 \pmod{q} \Rightarrow q \mid p^2 1 \Rightarrow q \mid (p-1)(p+1) \Rightarrow q \mid q-1 \text{ or } q \mid p+1$. Since p < q, q = p+1. $\therefore p = 2$ and q = 3 and #G = 12.

So,
$$n_3 = 4 = \# \text{Syl}_3(G)$$
.

New trick G acts on $\mathrm{Syl}_3(G)$. This gives a group homomorphism $\rho: G \to S_4$.

im $\rho \neq \{e\}$: if im $\rho = \{e\}$, then the action of G on $\mathrm{Syl}_3(G)$ would be trivial. This contradicts Sylow #2.

 $\therefore \ker \rho \triangleleft G$.

If ker $\rho = \{e\}$, $G \cong \text{im } \rho \leq S_4$, S_4 is known to be solvable.

 \therefore G is solvable.

$$(G \cong A_4)$$