MATH 817 Notes

JD Nir

jnir@huskers.unl.edu www.math.unl.edu/~jnir2/817.html October 23, 2015

Pf of Lemma: (\supseteq) is obvious because $Q \subseteq N_G(Q)$.

 (\subseteq) $H := P \cap N_G(Q)$. $Hu \subseteq P$ is clear. Enough To Show $H \subseteq Q$. Since $H \subseteq N_G(Q)$, $H \cdot Q \subseteq G$ and in fact (2nd Isomorphism Theorem)

 $H \cdot Q/Q \cong H/H \cap Q$.

In particular, $\#(H \cdot Q) = \frac{\#H \cdot \#Q}{\#(H \cap Q)}$. $H \leq P$, $\#P = p^j$, $Q \in \operatorname{Syl}_p(G) \Rightarrow \#(H \cdot Q) = p^m$, some m. But $Q \leq H \cdot Q$ and $Q \in \operatorname{Syl}_p(G) \Rightarrow Q \ H \cdot Q \Rightarrow H \subseteq Q$.

Pf of $\bigcirc 3$ G acts on $\operatorname{Syl}_p(G)$. By $\bigcirc 1$, $\exists p \in \operatorname{Syl}_p(G)$. P acts on $\operatorname{Syl}_P(G)$ too. Consider the orbits of the action of P on $\operatorname{Syl}_p(G)$. If $y \in P$, $yPy^{-1} = P$. So, $\{P\}$ is an orbit for the action of P on $\operatorname{Syl}_P(G)$. It suffices to prove that every other orbit \mathcal{O} , besides $\{P\}$, for the action of P on $\operatorname{Syl}_p(G)$ has size divisible by P. Pick such an \mathcal{O} . Let $P \in \mathcal{O}$. The stabilizer of the action of P for P is

$$\{y \in P \mid yQy^{-1} = Q\} = P \cap N_G(Q) \stackrel{\text{Lemma}}{=} P \cap Q < P, \text{ since } P \neq Q \text{ and } \#P = \#Q.$$

By LOIS: $\#\mathcal{O} = [P: P \cap Q]$ and $p \mid [P: P \cap Q]$. This proves 3.