MATH 817 Notes

JD Nir

jnir@huskers.unl.edu

www.math.unl.edu/~jnir2/817.html October 21, 2015

p prime, an e. a. p. g. is an abelian group (V, +) so that $p \cdot v = 0 \ \forall v \in V$.

 $\underline{\underline{\text{Prop}}}$ (1) If (V, +) is an e. a. p. g. then V is a \mathbb{Z}/p vector space with scalar multiplication defined as $\overline{m} \cdot v := mv = \underbrace{v + \ldots + v}_{m}$

(2) If V, W are two e.a.p.g.'s, a function $\rho: V \to W$ is a group homomorphism iff it is a \mathbb{Z}/p -linear transformation.

 $\underline{\text{Pf}}$ Easy. For (2), \Leftarrow is immediate. For \Rightarrow ,

$$\rho(\overline{m} \cdot v) = \rho\left(\overbrace{v + \ldots + v}^{m}\right) = \overbrace{\rho(v) + \ldots + \rho(v)}^{m} = \overline{m} \cdot \rho(v)$$

Corollary If V is an e.a.p.g. and $\#V < \infty$, then

$$\underbrace{1}_{V} \cong \underbrace{\mathbb{Z}/p \times \mathbb{Z}/p \times \cdots \times \mathbb{Z}/p}^{n}, \text{ some } n$$

(2) Aut $(V) \cong GL_n(\mathbb{Z}/p) := \{n \times n \text{ matrices } A \text{ with entries in } \mathbb{Z}/p \text{ such that } \det A \neq 0\}$

Prop
$$\#GL_n(\mathbb{Z}/p) = (p^n - 1)(p^n - p)(p^n - p^2)\cdots(p^n - p^{n-1})$$

sketch of proof: Let $[\vec{v_1}|\vec{v_2}|\cdots|\vec{v_n}]$ be any $n \times n$ matrix with entries in \mathbb{Z}/p . So, $\vec{v_i}$ is a column vector with n entries.

$$\begin{split} A \in GL_n(\mathbb{Z}/p) &\Leftrightarrow \{\vec{v_1}, \dots, \vec{v_n}\} \text{ is a linearly independent set} \\ &\Leftrightarrow \vec{v_1} \neq 0 \\ & \vec{v_2} \notin \operatorname{span} \left\{ \hat{v_1} \right\} \\ & \vec{v_3} \notin \operatorname{span} \left\{ \hat{v_1}, \vec{v_2} \right\} \\ & \vdots \\ & \vec{v_{j+1}} \notin \operatorname{span} \left\{ \vec{v_1}, \dots, \vec{v_j} \right\}, j = 1, \dots, n-1 \end{split}$$

If $\vec{v_1}, \dots, \vec{v_j}$ are linearly independent, then

$$\operatorname{span}\left\{\vec{v_1},\ldots,\vec{v_j}\right\} \cong \underbrace{\mathbb{Z}/p \times \cdots \times \mathbb{Z}/p}_{j}$$

and thus $|\operatorname{span}\{\vec{v_1},\ldots,\vec{v_j}\}|=p^j$

So, there are
$$p^n-1$$
 choices for $\vec{v_1}$
 p^n-p choices for $\vec{v_2}$
 \vdots
 p^n-p^j choices for $\vec{v_{i+1}} \square$

Application If #G = 45 and $\exists N \leq G$ such that #N = 9, then G is abelian.

Note By Sylow Theory, every group of order 45 has a normal subgroup of order 9.

 \downarrow :: $\#G = 45 \Rightarrow G$ abelian.

Pf: Since $N \subseteq G$, G acts on N via conjugation and so $\exists \rho : G \to \operatorname{Aut}(N)$ and $\ker \rho = C_G(N)$.

Claim: $C_G(N) = G$.

Pf: $\#N = 9 \Rightarrow N$ is abelian

 $\underline{\text{Case 1}}\ N$ is cyclic.

Then $\operatorname{Aut}(N) \cong \operatorname{Aut}(\mathbb{Z}/9) \cong (\mathbb{Z}/9)^{\times}$ and so $\# \operatorname{Aut}(N) = 6$

But $G/C_G(N) \cong \operatorname{im} \rho \leq \operatorname{Aut}(N) \Rightarrow \# \operatorname{im} \rho \mid \# \operatorname{Aut}(N)$

N abelian $\Rightarrow N \leq C_G(N) \Rightarrow \#^G/C_G(N) = 1$ or 5, since [G:N] = 5.

Since $5 \nmid 6$, $\#G/C_G(N) = 1$ in this case.

Case 2 N is not cyclic.

So, |n| = 1 or $3 \forall n \in N$.

 $\Rightarrow N \text{ is a e.a.3g.} \Rightarrow N \cong \mathbb{Z}/3 \times \mathbb{Z}/3 \Rightarrow \operatorname{Aut}(N) \cong GL_2(\mathbb{Z}/3)$

$$\Rightarrow \#Aut(N) = (3^2 - 1)(3^2 - 3) = 48. \ 5 \nmid 48 \Rightarrow \# \text{ im } \rho = 1 \Rightarrow C_G(N) = G.$$

This proves the claim.

Pick any $x \in G \setminus N$. Since $[G:N] = 5, \langle N, x \rangle = G$.

Since N is abelian and $x \in C_G(N)$, $\langle N, x \rangle$ is ableian.

 $\underline{\mathrm{Def}}\ G$ is a finite group, $\#G=p^\ell\cdot m, p\nmid m, p$ is prime $(\ell=0 \text{ is allowed})$

A Sylow p-subgroup of G is a subgroup $P \leq G$ such that $\#P = p^{\ell}$.

 $\underline{\operatorname{Ex}}$ (1) $\#G = 45, N \leq G, \#N = 9 \Rightarrow N$ is a Sylow 3-subgroup of G.

(2)
$$G = S_5 \ p = 5 \ \#G = 5 \cdot 24 \ (\ell = 1)$$

 $H_1 = \langle (1\ 2\ 3\ 4\ 5) \rangle$ is a Sylow 5-subgroup of S_5

 $H_2 = \langle (2\ 1\ 3\ 4\ 5) \rangle$ is another

 $H_3 = \langle (1\ 2\ 3\ 5\ 4) \rangle$ is another

:

 H_6

Notes In ex. (2)

- H_1, \ldots, H_6 are all conjugate to each other
- $6 \equiv 1 \pmod{5}$
- 6 | 24

Theorem p prime, G finite group, $\#G = p^{\ell} \cdot m, p \nmid m$. Let $\mathrm{Syl}_P(G) = \mathrm{set}$ of all Sylow p-subgroups of G and $n_p = \# \, \mathrm{Syl}_p(G)$. Then

- $\underbrace{(2)}{G} \text{ acts transitively on } \mathrm{Syl}_p(G) \text{ by conjugation: if } P \in \mathrm{Syl}_p(G), xPx^{-1} \in \mathrm{Syl}_p(G) \ \forall x \in G.$ If $P,Q \in \mathrm{Syl}_p(G),$ then $Q = xPx^{-1},$ some $x \in G.$

- 4 $n_p = [G:N_G(P)]$ for any $P \in \operatorname{Syl}_p(G)$
- $\bigcirc 5) \; n_p \mid m$