
MATH 107-153 Recitation 10
JD Nir

Avery 230 • Office Hours: W 4-5 R 11-2
jnir@huskers.unl.edu

www.math.unl.edu/∼jnir2/107-153.html
September 24, 2015

1: Integrate each of the following without using an integration table.

a

∫
1√

1− u2
du b

∫
1

1− u2 du c

∫
u√

1− u2
du d

∫
u

1− u2 du.

Simplify your answer as much as possible.

(a) You may recognize this integral as the derivative of arcsin(x). While we’ll hope to get this
answer, let’s use a trig substitution to find it.

Because we have the form a2 − x2 (where a = 1 and x = u) we should use

sin θ =
u

1
= u.

Substituting gives ∫
1√

1− u2
du =

∫
1√

1− (sin θ)2
du.

Notice that we have mixed variables: our integral is in terms of θ but our differential is in terms of
du. So we’ll have to find an equation for du in terms of dθ.

d

du
[sin θ] =

d

du
[u] =⇒ cos θ · dθ

du
= 1 =⇒ cos θ dθ = du

So now we can substitute and get:∫
1√

1− (sin θ)2
du =

∫
cos θ√

1− sin2 θ
dθ.

Now we use the trig identity

sin2 θ + cos2 θ = 1 =⇒ cos2 θ = 1− sin2 θ

to get ∫
cos θ√

1− sin2 θ
dθ =

∫
cos θ√
cos2 θ

dθ

=

∫
cos θ

cos θ
dθ

=

∫
1 dθ

= θ + C

Now we need to change our answer from being in terms of θ to being in terms of u. We have

sin θ = u =⇒ arcsin(sin θ) = arcsinu =⇒ θ = arcsinu

so ∫
1√

1− u2
du = arcsin(u) + C.
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(b) Even though this integral looks very similar to the last one, using the substitution u = sin θ
leads us to the integral ∫

1

cos θ
dθ

which is very hard to solve. (Go ahead and confirm this is true by trying the substitution!)

Instead, this is a partial fraction decomposition problem! First we have to factor the denominator
to get ∫

1

1− u2 du =

∫
1

(1 + u)(1− u)
du.

Now we can do the partial fraction decomposition:

1

(1 + u)(1− u)
=

A

1 + u
+

B

1− u
=⇒ 1 = A(1− u) +B(1 + u)

Now there are two ways we can proceed. The first is to note that 1 = 0u + 1 is a polynomial in
terms of u and so is A(1 − u) + B(1 + u) = (B − A)u + (A + B). Because these two polynomials
are equal, the coefficients of each term must be equal. This gives us a system of equations with
two equations and two unknowns:

0 = (B −A)
1 = (A+B)

We can solve this system to find A = 1
2 and B = 1

2 .

Alternatively, we know 1 = A(1 − u) + B(1 + u) has to hold for all values of u. In particular, let
u = 1. Then

1 = A(1− 1) +B(1 + 1) =⇒ 1 = 2B =⇒ B =
1

2
.

Also, let u = −1 and

1 = A(1− (−1)) +B(1 + (−1)) =⇒ 1 = 2A =⇒ A =
1

2
.

As expected, both methods give us the same answer.

Now we can use our partial fraction decompostion to write∫
1

(1 + u)(1− u)
du =

∫ 1
2

1 + u
+

1
2

1− u du

=
1

2

∫
1

1 + u
du+

1

2

∫
1

1− u du

While these are almost of the form
∫

1
x dx = ln |x|, they aren’t quite that simple. We may be

tempted to skip the substitution step, but that would be dangerous in this case for reasons we’ll
see in a moment. Because our variable is u, we’ll do a w-substitution.

For the first substitution we get w = 1 + u. Then dw = du and

1

2

∫
1

1 + u
du =

1

2

∫
1

w
dw =

1

2
ln |w|+ C1 =

1

2
ln |1 + u|+ C1.

For the second substitution we use w = 1 − u. Then dw = −du. Note the minus sign! If we’d
skipped the substitution step, it’s possible we would have missed it!

1

2

∫
1

1− u du =
1

2

∫
1

w
(−dw) = −1

2

∫
1

w
dw = −1

2
ln |w|+ C2 = −1

2
ln |1− u|+ C2
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Now we can combine those two equations. We can also combine the constants into one constant.

1

2

∫
1

1 + u
du+

1

2

∫
1

1− u du =
1

2
ln |1 + u| − 1

2
ln |1− u|+ C

Because the question asks us to simplify as much as possible, we should use some of the laws of
logs:

1

2
ln |1 + u| − 1

2
ln |1− u|+ C =

1

2
(ln |1 + u| − ln |1− u|) + C

=
1

2

(
ln

∣∣∣∣1 + u

1− u

∣∣∣∣)+ C

=
1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣+ C

= ln

∣∣∣∣1 + u

1− u

∣∣∣∣1/2 + C

= ln

√∣∣∣∣1 + u

1− u

∣∣∣∣+ C

This gives us a final answer of ∫
1

1− u2 du = ln

√∣∣∣∣1 + u

1− u

∣∣∣∣+ C.

This is a pretty complicated answer. Let’s make sure it’s right by taking the derivative.

d

du

[
ln

√∣∣∣∣1 + u

1− u

∣∣∣∣+ C

]
=

d

du

[
ln

√∣∣∣∣1 + u

1− u

∣∣∣∣
]

+
d

du
[C]

=
1√∣∣∣1+u
1−u

∣∣∣ ·
d

du

[√∣∣∣∣1 + u

1− u

∣∣∣∣
]

+ 0

=
1√
|1+u|√
|1−u|

· 1

2

√∣∣∣1+u
1−u

∣∣∣ ·
d

du

[∣∣∣∣1 + u

1− u

∣∣∣∣]

=

√
|1− u|√
|1 + u|

· 1

2

√
|1+u|√
|1−u|

· (1− u)[1]− [−1](1 + u)

(1− u)2

=

√
|1− u|√
|1 + u|

·
√
|1− u|

2
√
|1 + u|

· 1− u+ 1 + u

(1− u)2

=

√
|1− u|2

2
√
|1 + u|2

· 2

(1− u)2

=
|1− u|

|1 + u|(1− u)2

=
1

(1 + u)(1− u)

=
1

1− u2

Just what we wanted!
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(c) This is another trig substitution. Since we have a2 − x2 in the denominator (with a = 1 and
x = u again) we’ll use

sin θ =
u

1
= u

to get ∫
u√

1− u2
du =

∫
u√

1− (sin θ)2
du.

We can get rid of the u in the numerator by writing∫
u√

1− (sin θ)2
du =

∫
sin θ√

1− (sin θ)2
du.

Notice that we have mixed variables: our integral is in terms of θ but our differential is in terms of
du. So we’ll have to find an equation for du in terms of dθ.

d

du
[sin θ] =

d

du
[u] =⇒ cos θ · dθ

du
= 1 =⇒ cos θ dθ = du

So now we can write ∫
sin θ√

1− (sin θ)2
du =

∫
sin θ√

1− sin2 θ
· cos θ dθ.

We can use the trig identity cos2 θ = 1− sin2 θ again to get∫
sin θ√

1− sin2 θ
· cos θ dθ =

∫
sin θ cos θ√

cos2 θ
dθ

=

∫
sin θ cos θ

cos θ
dθ

=

∫
sin θ dθ

= − cos θ + C

Now we solve for θ:

sin θ = u =⇒ arcsin(sin θ) = arcsin(u) =⇒ θ = arcsin(u)

and get
− cos θ + C = − cos(arcsin(u)) + C.

We can simplify this answer further. Remember that the definition of arcsin(u) is “the angle whose
sine is u.” We can look at what that angle must look like. Lets call that angle φ. Remember that
the sine of an angle is the ratio of the side of the triangle opposite the angle over the hypotenues
of the triangle. Then we can use the Pythagorean Theorem to fill in the last side of the triangle.

φ

u1

s =
√
1− u2

u2 + s2 = 12

s2 = 1− u2
s =
√
1− u2

Now let’s return to simplifying cos(arcsin(u)). Since we set arcsin(u) = φ, we can look at the
triangle to find

cos(arcsin(u)) = cos(φ) =
√

1− u2
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giving us a final answer of ∫
u√

1− u2
du =

√
1− u2 + C.

Pretty amazing! Even though we used a trig substitution, the final answer has nothing to do with
trig functions. Just to make sure we got it right, let’s take the derivative to check.

d

du

[√
1− u2 + C

]
=

d

du

[√
1− u2

]
+

d

du
[C]

=
d

du
[(1− u2)1/2] + 0

= −1

2
· (1− u2)−1/2 · d

du
[1− u2]

= − 1

2(1− u2)1/2 · (−2u)

= − −2u

2
√

1− u2
=

u√
1− u2

which is exactly what we were expecting.

(d) Finally an easy problem! Don’t be tricked by the other three; we can just use substituton to
solve this one. Once again we’ll use w instead of u because our variable is u. Let w = 1−u2. Then
dw
du = −2u and du = dw

−2u so ∫
u

1− u2 du =

∫
u

w

dw

−2u

= −1

2

∫
1

w
dw

= −1

2
ln |w|+ C

= −1

2
ln |1− u2|+ C
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p. 378 #7: Find ∫ 1

0
lnx dx

or explain why it does not converge.

Note that ln(0) is not defined so we need to treat this as an indefinite integral. So if this integral
does converge we will have ∫ 1

0
ln(x) dx = lim

a→0+

∫ 1

a
ln(x) dx.

Now let’s look at the integral. We don’t have an integration rule that solves this integral, but we
can solve it with integration by parts.

While we don’t know how to take the integral of lnx, it is easy to take the derivative. Therefore
we’ll let u = lnx and dv = dx. Then du = 1

x dx and v = x. Thus∫
lnx dx = x lnx−

∫
x · 1

x
dx

= x lnx−
∫
dx

= x lnx− x+ C

Since we have a definite integral, we can drop the “+C” and say∫ 1

a
lnx = [x lnx− x]1a = ((1) ln(1)− 1)− (a ln a− a) = a− a ln a− 1

Now we want to take this limit:

lim
a→0+

a− a ln a− 1 = lim
a→0+

a− lim
a→0+

a ln a− lim
a→0+

1 = 0− lim
a→0+

a ln a− 1

In order to calculate the last limit, we note that it is of the form 0 · (−∞). To solve this type of
integral we first rewrite it as

lim
a→0+

a ln a = lim
a→0+

ln a
1
a

Now that it is in the form −∞
∞ we can apply L’Hôpital’s Rule to get

lim
a→0+

ln a
1
a

= lim
a→0+

d
da [ln a]
d
da

[
1
a

]
= lim

a→0+

1
a

− 1
a2

= lim
a→0+

−a
2

a

= lim
a→0+

a

= 0

Now that we have solved this limit we have∫ 1

0
lnx dx = lim

a→0+

∫ 1

a
lnx dx = lim

a→0+
a− a ln a− 1 = −1

Does this answer make sense? Let’s look at the graph!
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The area of the graph between 0 and 1 is below the x-axis, so it makes sense that the integral is
negative. Also, the area seems pretty reasonable as the area under the graph is almost the same
as the triangle with base 1 and height −2 which has area 1

2(1)(−2) = −1.



MATH 107-153 Recitation 10

p.378 #49: The gamma funciton is defined for all x > 0 by the rule

Γ(x) =

∫ ∞
0

tx−1e−t dt.

(a) Find Γ(1) and Γ(2).

(b) Integrate by parts with respect to t to show that, for positive n,

Γ(n+ 1) = nΓ(n).

(c) Find a simple expression for Γ(n) for positive integers n.

(a) Plugging in x = 1 we need to solve

Γ(1) =

∫ ∞
0

t1−1e−t dt =

∫ ∞
0

t0e−t dt =

∫ ∞
0

e−t dt.

This is an improper integral because the upper bound is ∞. To solve it, if it does converge, we’ll
use ∫ ∞

0
e−t dt = lim

b→∞

∫ b

0
e−t dt.

Now we can solve the integral. We’ll skip the u-substitution to get:

lim
b→∞

∫ b

0
e−t dt = lim

b→∞
[−e−t]b0

= lim
b→∞

−e−b − (−e0)

= lim
b→∞

1− 1

eb

As b→∞, eb also grows without bound so 1
eb
→ 0. Thus

Γ(1) = lim
b→∞

1− 1

eb
= 1.

Now plugging in x = 2 we need to solve

Γ(2) =

∫ ∞
0

t2−1e−t dt =

∫ ∞
0

te−t dt.

Once again we’re dealing with an improper integral. If it converges, we’ll have∫ ∞
0

te−t dt = lim
b→∞

∫ b

0
te−t dt.

This time the integral is a little harder to solve. We’ll use integration by parts with u = t and
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dv = e−t dt. Then du = dt and v = −e−t dt so

lim
b→∞

∫ b

0
te−t = lim

b→∞

(
[−te−t]b0 −

∫
−e−t dt

)
= lim

b→∞

(
(−be−b)− (−0e−0) +

∫ b

0
e−t dt

)
= lim

b→∞

(
−be−b +

∫ b

0
e−t dt

)
= lim

b→∞

(
− b

eb
+ [−e−t]b0 dt

)
= lim

b→∞

(
− b

eb
+−e−b − (−e0) dt

)
= lim

b→∞

(
− b

eb
− 1

eb
+ 1 dt

)
As we saw earlier, lim

b→∞
1
eb

= 0. To solve lim
b→∞

b
eb

we could use L’Hôpital’s Rule but instead we note

that eb dominates b; that is, it grows much faster than b. This will be very important when we
study other limits later in the course. For now, we accept lim

b→∞
b
eb

= 0. Then

Γ(2) = lim
b→∞

− b

eb
− 1

eb
+ 1 = 1.

(b) Just like other improper integrals, we write

Γ(n+ 1) =

∫ ∞
0

tn+1−1e−t dt = lim
b→∞

∫ b

0
tne−t dt

As the problem suggests, we’ll use integration by parts. As we’ve seen in these cases, it’s usually
best to let u = tn and dv = e−t dt. Then du = ntn−1dt and v = −e−t. Keep in mind that we are
dealing with an improper integral, so we write

lim
b→∞

∫ b

0
tne−t dt = lim

b→∞

(
[−tne−t]b0 −

∫ b

0
−(n)tn−1e−t dt

)
= lim

b→∞

(
[−tne−t]b0 +

∫ b

0
(n)tn−1e−t dt

)
= lim

b→∞

(
[−tne−t]b0 + (n)

∫ b

0
tn−1e−t dt

)
= lim

b→∞

(
−b

n

eb
−
(
−0n

e0

)
+ nΓ(n)

)
= lim

b→∞

(
−b

n

eb
+ 0 + nΓ(n)

)
The latter two terms of the limit are easy to take, but to take the first limit we once again need
that eb dominates bn for any n. We’ll see a rigorous reason why when we study sequences, but for
now we’ll just accept that lim

b→∞
bn

eb
= 0 because that will get us the right answer.

Anyway, we find Γ(n+ 1) = nΓ(n) as we hoped.
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(c) We need a function that satifies f(1) = 1 and f(2) = 1 and f(n+1) = n ·f(n). We can calculate
some values of f :

n f(n)

1 1
2 1
3 2 · f(2) = 2 · 1 = 2
4 3 · f(3) = 3 · 2 · 1 = 6
5 4 · f(4) = 4 · 3 · 2 · 1 = 24

This looks almost like the factorial function, f(n) = n! = n · (n− 1) · (n− 2) · . . . · 1. The difference
is 2! = 2 · 1 = 2, not 1, so we have

Γ(n+ 1) = n!


