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p. 351 #15, 16: Consider the two integrals∫
x2e3x dx and

∫
x2ex

3
dx .

Both of these integrals can be solved using tools you already have, but one is much
nicer than the other.

1. Identify and solve the easier integral.

2. Come up with a “plan of attack” for the harder integral. In other words, decide
which integration technique you would use to solve it and, if relevant, what
subsitutions you would make (such as choosing a u for u-substitution or a u and
a dv for integration by parts.

3. Instead of solving the integral that way, find an applicable rule in a table and use
that to find the integral. Can you see how your technique would have lead to the
correct answer?

1. The integral on the right allows for a nice u-substitution. Let u = x3. Then du
dx = 3x2 so

dx = du
3x2 and ∫

x2ex
3
dx =

∫
��x
2eu

du

3��x
2

=
1

3

∫
eu du

=
1

3
eu + C

=
1

3
ex

3
+ C

2. Since no obvious substitution is present, let’s try integration by parts. Both x2 and e3x are easy
to differentiate or integrate, so let’s choose to differentiate x2 to make it simpler. Then

u = x2 dv = e3xdx
du = 2xdx v = 1

3e
3x

so ∫
x2e3x dx =

1

3
x2e3x −

∫
2

3
xe3x dx.

While we still don’t have a basic integration rule to use, the new integral is simpler because the
degree of x went down. It looks like we could try integration by parts again to get the answer.
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3. Looking at rule III. 14 in the back of the book, we find∫
p(x)eax dx =

1

a
p(x)eax − 1

a2
p′(x)eax +

1

a3
p′′(x)eax − . . . + C

where p(x) is a polynomial. Plugging in this formula, we get∫
x2e3x dx =

1

3
x2e3x − 1

9
· 2xe3x +

1

27
· 2e3x − 1

81
· 0e3x + C

= e3x
(
x2

3
− 2x

9
+

1

27

)
+ C

It’s easy to see where this formula comes from. All it is doing is repeatedly applying integration by
parts until we’ve taken the derivative of the polynomial so many times that it becomes zero. We
also have to add an additional 1

a factor for every derivative because we’re taking the antiderivative
of eax an additional time.

p. 351 #34: Solve the integral ∫
1

y2 + 4y + 5
dy

using the following steps:

1. Look at a table of integrals and decide on the form∫
1

x2 + a2
dx =

1

a
arctan

x

a
+ C, a 6= 0.

2. Use the “completing the square” technique to get the integral into the appropri-
ate form.

3. Apply the ingegration rule you chose in step 1.

1. It really does appear that this form is the best choice. Becuase we’re adding everything in the
denominator, it is unlikely we can factor y2 + 4y + 5 = (y − a)(y − b) so the only choice with y2 in
the denominator not under a square root is the form above.

2. Remember that in completing the square we want to get an expression of the form (y + a)2 + b
that is equal to y2 + 4y + 5. We know that (y + a)2 = y2 + 2ay + a2 and we want 2ay = 4y so
let’s choose a = 2. But (y + 2)2 = y + 4y + 4, so we have 1 left over; we see b = 1. In short,
y2 + 4y + 5 = (y + 2)2 + 1.

3. Now we can rewrite the formula:∫
1

y2 + 4y + 5
dy =

∫
1

(y + 2)2 + 1
dy

and we can use the integration rule with x = (y + 2) and a = 1 (note that a2 = 12 = 1) to get∫
1

(y + 2)2 + 1
dy = arctan(y + 2) + C
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3: Let a and b be distinct real numbers. Use partial fraction decomposition to find a

simpler form of
1

(x− a)(x− b)
. Then use this decomposition to find∫

1

(x− a)(x− b)
dx.

Finally, compare your answer to formula V. 26 in the back of the book.

Let
1

(x− a)(x− b)
=

M

x− a
+

N

x− b

for some constants M and N that we will figure out in a moment. Then we can multiply both sides
by the denominator to get

����(x− a)����(x− b)

����(x− a)����(x− b)
=

M����(x− a)(x− b)

����(x− a)
+

N(x− a)����(x− b)

����(x− b)
which simplifies to 1 = M(x− b) +N(x−a)

There are two ways of finding M and N . The first is to note that the polynomial on the left has
to be equal to the polynomial on the right which can only happen if the coefficients of each power
of x are equal. In other words, we can rewrite the equation as

0 ∗ x1 + 1 ∗ x0 = (M + N)x1 + (−aM − bN) ∗ x0

so
M + N = 0 and − bM − aN = 1

We can solve this sysyem of equations to find M = 1
a−b and N = 1

b−a .

Alternatively, note that we assume

1

(x− a)(x− b)
=

M

(x− a)
+

N

(x− b)

holds except when (x− a)(x− b) = 0 as then the fraction is undefined. However, we want

1 = M(x− b) + N(x− a)

to hold for every value of x, even if that value of x would make the first equation undefined. The
first equation is undefined when x = a and x = b so let’s make sure the second equation still holds
then. That means

1 = M(a− b) + N(a− a) or 1 = M(a− b) so M =
1

a− b

and

1 = M(b− b) + N(b− a) or 1 = N(b− a) so N =
1

b− a
.

Whichever method we choose, we can now solve the integral:∫
1

(x− a)(x− b)
dx =

∫ 1
(a−b)

(x− a)
+

1
(b−a)

(x− b)
dx

=

∫ 1
(a−b)

(x− a)
dx +

∫ 1
(b−a)

(x− b)
dx

=
1

(a− b)

∫
1

(x− a)
dx +

1

(b− a)

∫
1

(x− b)
dx
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From here you may be able to see the answer, but technically we need to use u substitution to
apply our basic antidifferentiation rules. So let u = x− a and du = dx and also let w = x− b and
dw = dx to get

1

(a− b)

∫
1

(x− a)
dx +

1

(b− a)

∫
1

(x− b)
dx =

1

(a− b)

∫
1

u
du +

1

(b− a)

∫
1

w
dw

=
1

a− b
ln |u|+ 1

b− a
ln |w|+ C

=
1

a− b
ln |x− a|+ 1

b− a
ln |x− b|+ C

=
1

a− b
(ln |x− a| − ln |x− b|) + C

which matches formula V. 26 exactly.


