MATH 107-153 Recitation 6-7

Avery 230 • Office Hours: W 4-5 R 11-2 jnir@huskers.unl.edu www.math.unl.edu/~jnir2/107-153.html September 15, 2015

p. 346 #14: Find
$$\int \cos^2(3\alpha + 1) \ d\alpha$$
.

This is a tricky one. If we remember the double angle formulas of trig functions, we could rewrite $\cos^2(3\alpha + 1)$ in an easier form. But let's try to approach this with integration by parts.

First let's try the obvious case: Let $u = \cos^2(3\alpha + 1)$ and dv = 1 $d\alpha$. Then $du = 2\cos(3\alpha + 1) \cdot -\sin(3\alpha + 1) \cdot 3$ $d\alpha = 6\sin(3\alpha + 1)\cos(3\alpha + 1)$ $d\alpha$ and $v = \alpha$. Then

$$\int \cos^2(3\alpha + 1) \ d\alpha = (\cos^2(3\alpha + 1))(\alpha) - \int (\alpha)(6\sin(3\alpha + 1)\cos(3\alpha + 1) \ d\alpha)$$

We can almost do the new integral with a substitution (by letting $w = \sin(3\alpha + 1)$ so $d\alpha = \frac{dw}{3\cos(3\alpha + 1)}$ but we will have an α left over that will be difficult to deal with.

Instead, let's try a more clever choice for u and dv. Let $u = \cos(3\alpha + 1)$ and $dv = \cos(3\alpha + 1)$ $d\alpha$. Then $du = -3\sin(3\alpha + 1)$ $d\alpha$ and $v = \frac{\sin(3\alpha + 1)}{3}$. This gives us

$$\int \cos^2(3\alpha + 1) \ d\alpha = \frac{1}{3}\sin(3\alpha + 1)\cos(3\alpha + 1) - \int \frac{\sin(3\alpha + 1)}{3} \cdot -3\sin(3\alpha + 1) \ d\alpha$$
$$= \frac{1}{3}\sin(3\alpha + 1)\cos(3\alpha + 1) + \int \sin(3\alpha + 1)^2 \ d\alpha$$

The new integral looks just as hard as the last one! In fact, it looks almost the same. Recall that $\sin^2 \theta + \cos^2 \theta = 1$ for any angle θ . So we can rewrite the integral as

$$\int \sin(3\alpha+1)^2 d\alpha = \int 1 - \cos^2(3\alpha+1) d\alpha = \alpha - \int \cos^2(3\alpha+1) d\alpha.$$

Now we have the *exact* problem we started with. Let's treat the whole integral as a variable and combine like terms:

$$\int \cos^2(3\alpha + 1) \ d\alpha = \frac{1}{3}\sin(3\alpha + 1)\cos(3\alpha + 1) + \alpha - \int \cos^2(3\alpha + 1) \ d\alpha$$
$$2\int \cos^2(3\alpha + 1) \ d\alpha = \frac{1}{3}\sin(3\alpha + 1)\cos(3\alpha + 1) + \alpha.$$

Then all we need to do is divide by two to get our answer. Don't forget the constant of integration!

$$\int \cos^2(3\alpha + 1) \ d\alpha = \frac{1}{6}\sin(3\alpha + 1)\cos(3\alpha + 1) + \frac{\alpha}{2} + C.$$

p. 346 #14: Find
$$\int (\ln t)^2 dt$$
.

Let's try integration by parts using $u = (\ln t)^2$ and dv = 1 dt. Then $du = 2 \ln t \cdot \frac{1}{t}$ dt and v = t. This gives us

$$\int (\ln t)^2 dt = ((\ln t)^2)(t) - \int (t)(2\ln t \cdot \frac{1}{t} dt) = t(\ln t)^2 - 2 \int \ln t dt.$$

We're stuck with $\int \ln t \, dt$, which we don't have a rule for, but we can try using integration by parts again. This time let $u' = \ln t$ and $dv' = 1 \, dt$. Then $du' = \frac{1}{t} \, dt$ and v' = t. This gives us

$$\int \ln t \ dt = (\ln t)(t) - \int (t)(\frac{1}{t} \ dt) = t \ln t - \int dt.$$

Finally we get an easy integral! Plugging this all back in, we get

$$t(\ln t)^2 - 2 \int \ln t \ dt = t(\ln t)^2 - 2 \left(t \ln t - \int dt \right) = t(\ln t)^2 - 2t \ln t + 2t + C.$$

p. 346 #28: Find $\int x^5 \cos x^3 dx$.

This almost looks like a *u*-substitution problem. Let's try $u=x^3$ and see where that gets us. Then $dx=\frac{du}{3x^2}$ so

$$\int x^5 \cos x^3 \ dx = \int \frac{x^5}{3x^2} \cos u \ du = \frac{1}{3} \int x^3 \cos u \ du.$$

Well, not all of the powers of x canceled, but we are left with $x^3 = u$. So we can rewrite the integral as

$$\frac{1}{3} \int x^3 \cos u \ du = \frac{1}{3} \int u \cos u \ du.$$

While we don't have a rule for this kind of integral, it looks much easier to do with integration by parts! Lets use w instead of u so we don't get confused with our u-substitution. Choose w = u and $dv = \cos u \ du$. Then dw = du and $v = \sin u$. So

$$\frac{1}{3} \int u \cos u \, du = \frac{1}{3} \left(u \sin u - \int \sin u \, du \right) = \frac{1}{3} (u \sin u + \cos u) + C$$

Now, of course, we have to go back to the u-substitution and use x instead, giving us our final answer:

$$\int x^5 \cos x^3 \, dx = \frac{1}{3} (x^3 \sin x^3 + \cos x^3) + C.$$

p. 346 #49: Use integration by parts twice to find $\int e^x \sin x \ dx$.

Both e^x and $\sin x$ are pretty easy to both differentiate and anti-differentiate which makes it pretty hard to choose values for u and dv. Let's start with $u = e^x$ and $dv = \sin x \, dx$. Then $du = e^x \, dx$ and $v = -\cos x$ so

$$\int e^x \sin x \, dx = (e^x)(-\cos x) - \int (-\cos x)(e^x \, dx) = -e^x \cos x + \int e^x \cos x \, dx.$$

Well, this didn't work, but the problem said we'd need integration by parts twice, so let's just dot it again. Let $u' = e^x$ and let $dv' = \cos x \, dx$. Then $du' = e^x dx$ and $v' = \sin x$ so

$$-e^{x}\cos x + \int e^{x}\cos x \, dx = -e^{x}\cos x + (e^{x})(\sin x) - \int (\sin x)(e^{x} \, dx) = e^{x}\sin x - e^{x}\cos x - \int e^{x}\sin x \, dx$$

It looks like we haven't gotten anywhere, but remember where we started!

$$\int e^x \sin x \, dx = e^x \sin x - e^x \cos x - \int e^x \sin x \, dx$$
$$2 \int e^x \sin x \, dx = e^x \sin x - e^x \cos x$$
$$\int e^x \sin x \, dx = \frac{e^x \sin x - e^x \cos x}{2} + C$$

It looks like we chose the correct u and dv in the first step. I wonder what would have happened if we'd switched them?

Let $u = \sin x$ and $dv = e^x dx$. Then $du = \cos x dx$ and $v = e^x$ so

$$\int e^x \sin x \ dx = (\sin x)(e^x) - \int e^x \cos x \ dx.$$

Using integration by parts again with $u' = \cos x$ and $dv' = e^x dx$ we get $du' = -\sin x dx$ and $v' = e^x$ so

$$(\sin x)(e^x) - \int e^x \cos x \, dx = e^x \sin x - \left((\cos x)(e^x) - \int (e^x)(-\sin x \, dx)\right) = e^x \sin x - e^x \cos x - \int e^x \sin x \, dx.$$

We can do the same trick to combine the $\int e^x \sin x \, dx$ and we get the same answer.

In this case it doesn't matter what we choose for u and dv as long as we stay consistent both times we use integration by parts. What happens when you use $u = e^x$ and $dv = \sin x \, dx$ but then use $u' = \cos x$ and $dv' = e^x \, dx$?