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p. 383 #5: Does ∫ ∞

1

x

x2 + 2x+ 4
dx

converge or diverge? Start by using “intuition analysis” to guess whether it converges
or diverges and then use the comparison rule to show your guess is correct.

This integral is improper because the upper bound is infinity, so we want to look at the behavior
of the function as x→∞. When x is large, the numerator clearly acts like x. In the denominator,
x2 gets larger much faster than 2x or 4, so the denominator acts like x2. Thus our intution says

this integral should act like x
x2

= 1
x . We know

∫ ∞

1

1

x
dx diverges by the p-test, so we expect∫ ∞

1

x

x2 + 2x+ 4
dx to diverge as well.

In order to use the comparison test, we will need to find a function f(x) such that

f(x) ≤ x

x2 + 2x+ 4

when x ≥ 1 and
∫∞
1 f(x) dx diverges. Unfortunately, using 1

x doesn’t work because x2 < x2+2x+4
when x ≥ 1. Instead, note that

x2 ≤ x2

2x ≤ 2x2

4 ≤ 4x2

x2 + 2x+ 4 ≤ x2 + 2x2 + 4x2

1

x2 + 2x+ 4
≥ 1

x2 + 2x2 + 4x2

x

x2 + 2x+ 4
≥ x

x2 + 2x2 + 4x2
=

1

7x

where in each case we use x ≥ 1. Thus for our f(x) we use 1
7x . We know that∫ ∞

1

1

7x
dx =

1

7

∫ ∞

1

1

x
dx which diverges by p-test.

Now we can finally say:

Because 1
7x ≤

x
x2+2x+4

when x ≥ 1 and

∫ ∞

1

1

7x
dx diverges by the p-test, we know

∫∞
1

x
x2+2x+4

dx

diverges by the comparison test.
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p. 384 #20: Does ∫ ∞

1

1√
θ3 + θ

dθ

converge or diverge? Start by using “intuition analysis” to guess whether it converges
or diverges and then use the comparison rule to show your guess is correct.

Note: I copied the problem incorrectly. #20 in the book asks about

∫ 1

0

1√
θ3 + θ

dθ. We will solve

both problems.

This integral is improper because the upper bound is infinity, so we want to look at the behavior of
the function as θ →∞. When θ is large, the numerator clearly acts like 1. In the denominator, θ3

gets larger much faster than θ, so the denominator acts like
√
θ3. Thus our intution says this integral

should act like 1
θ3/2

. We know

∫ ∞

1

1

θ3/2
dθ converges by the p-test, so we expect

∫ ∞

1

1√
θ3 + θ

dθ

to converge as well.

In order to use the comparison test, we will need to find a function g(θ) such that

g(θ) ≥ 1√
θ3 + θ

when θ ≥ 1 and
∫∞
1 g(θ) dθ converges. This time we can just use

1

θ3/2
because

θ3 + θ ≥ θ3√
θ3 + θ ≥

√
θ3

1√
θ3 + θ

≤ 1√
θ3

=
1

θ3/2

We know that ∫ ∞

1

1

θ3/2
dθ converges by p-test.

Now we can finally say:

Because 1
θ3/2
≥ 1√

θ3+θ
when θ ≥ 1 and

∫ ∞

1

1

θ3/2
dθ converges by the p-test, we know

∫ ∞

1

1√
θ3 + θ

dθ

converges by the comparison test.

Now we solve the question the book actually asked about: Does∫ 1

0

1√
θ3 + θ

dθ

converge or diverge?

This integral is improper because the function is undefined at θ = 0, so we want to look at the
behavior of the function as θ → 0. When θ is small, the numerator clearly acts like 1. In the
denominator, θ3 gets smaller much faster than θ, so the denominator acts like

√
θ. Thus our

intution says this integral should act like 1
θ1/2

. We know

∫ 1

0

1

θ1/2
dθ converges by the p-test, so we

expect

∫ 1

0

1√
θ3 + θ

dθ to converge as well.
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In order to use the comparison test, we will need to find a function g(θ) such that

g(θ) ≥ 1√
θ3 + θ

when 0 ≤ θ ≤ 1 and
∫ 1
0 g(θ) dθ converges. Once again we can just use

1

θ1/2
because

θ3 + θ ≥ θ√
θ3 + θ ≥

√
θ

1√
θ3 + θ

≤ 1√
θ

=
1

θ1/2

We know that ∫ 1

0

1

θ1/2
dθ converges by p-test.

Now we can finally say:

Because 1
θ1/2
≥ 1√

θ3+θ
when 0 ≤ θ ≤ 1 and

∫ 1

0

1

θ1/2
dθ converges by the p-test, we know

∫ 1

0

1√
θ3 + θ

dθ

converges by the comparison test.

p. 389 #7: Write a Riemann sum and then a definite integral representing the area
between the curves y = x and y =

√
x using horizontal strips of height ∆y.

The first thing we should do is sketch a picture of what the question is asking:

∆y

y = x

y = x2

Next we need to ask when these curves intersect. That happens when

x = x2

x− x2 = 0

x(1− x) = 0

This happens when x = 0 or x = 1. Using either of the equations, we get the points of intersection
as (0, 0) and (1, 1).
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Now usually we could choose whether we wanted to use horizontal strips of height ∆y or vertical
strips of width ∆x, but the problem specifies that we need to do the former.

How wide are our horizontal strips? The width goes all the over to the outside curve, y = x2, but
we need to subtract off the inside curve, y = x. Thus the width is x2 − x and the area of the
rectangle is (x2− x)∆y. But this doesn’t work because we have mixed xs and ys. We need to turn
the xs in our width into ys. To do this we use the inverse functions

√
y = x and y = x to get the

area of the rectangle as (
√
y − y)∆y.

Now we can add up all of the rectangles to get the Riemann sum

n∑
i=1

(
√
yi − yi)∆y

Now taking the limit as ∆y → 0 (or, equivalently, n→∞), we get the integral∫ 1

0

√
y − y dy

where the bounds are 0 to 1 becuase the y-coordinates of the intersection points are 0 and 1.

The problem doesn’t ask for it, but we can solve this integral easily to get 2
3 −

1
2 = 1

6 .

p. 389 #13: Write a Riemann sum and then a definite integral representing the
volume of a hemisphere with diameter 10mm using horizontal strips of height ∆y.

Once again we should start by drawing a picture. However, it is very difficult to do so digitally,
so these solutions omit the picture. Sorry.

If we could look at the picture, we would see that our approximation is a disk with height ∆y and
some radius r. The volume of the disk is thus (πr2)∆y but we’ll need to find a formula for r in
terms of y. To do that, we “squash” the picture down to two dimensions and see this:

10mm

5

5

r

y

In order to find r, we draw the blue line to create a right triangle. Then we can use the Pythagorean
Theorem to get

y2 + r2 = 52 or r =
√

25− y2
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Therefore the Riemann sum for our disks is

n∑
i=1

(π(
√

25− y2i )
2)∆y

and taking the limit as ∆y → 0 gives us

π

∫ 5

0
25− y2 dy

where we get the bounds from the picture: the height of the disks range from y = 0 to y = 5.

Evaluating the integral gives us 2
3π53mm3 which is exactly what we expect from geometry.

p. 389 #21: Consider ∫ 6

0
π
(

3− y

2

)2
dy.

Is this the formula for the volume of a hemisphere or a cone? If a hemisphere, give its
radius; if a cone, give its height. Sketch your solid and label all relevant quantities.

The first thing we should do is turn the integral back into a Riemann sum:

n∑
i=1

π
(

3− yi
2

)2
∆y.

This makes it easy to see that our estimation is the sum of disks with radius 3 − y
2 . This ra-

dius changes linearly with y, so we expect this integral to describe the volumne of a cone, not a
hemisphere.

Looking at the integral, the range of y is 0 to 6, so our cone must have height 6. When y = 0,
our radius is three, so the radius of the cone must be three. Once again, it is difficult to draw
three-dimensional pictures on the computer, so no picture is included.


