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Preface

This supplement provides hints, partial solutions, and complete solutions to

many of the exercises in Chapters 1 through 5 of Applied Partial Differential

Equations, 3rd edition.

This manuscript is still in a draft stage, and solutions will be added as

the are completed. There may be actual errors and typographical errors in

the solutions. I would greatly appreciate any comments or corrections on the

manuscript. You can send them to me at:

jlogan1@math.unl.edu

J. David Logan





1
The Physical Origins of Partial

Differential Equations

1.1 Mathematical Models

Exercise 1. Verification that u = 1√
4πkt

e−x2/4kt satisfies the heat equation

ut = kuxx is straightforward differentiation. For larger k, the profiles flatten

out much faster.

Exercise 2. The problem is straightforward differentiation. Taking the deriva-

tives is easier if we write the function as u = 1
2 ln(x

2 + y2).

Exercise 5. Integrating uxx = 0 with respect to x gives ux = φ(t) where φ is

an arbitrary function. Integrating again gives u = φ(t)x + ψ(t). But u(0, t) =

ψ(t) = t2 and u(1, t) = φ(t) · 1 + t2, giving φ(t) = 1 − t2. Thus u(x, t) =

(1 − t2)x+ t2.

Exercise 6. Leibniz’s rule gives

ut =
1

2
(g(x+ ct) + g(x− ct)).

Thus
utt =

c

2
(g′(x+ ct)− g′(x− ct)).

In a similar manner

uxx =
1

2c
(g′(x + ct)− g′(x− ct)).
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Thus utt = c2uxx.

Exercise 7. If u = eat sin bx then ut = aeat sin bx and uxx = −b2eat sin bx.
Equating gives a = −b2.

Exercise 8. Letting v = ux the equation becomes vt+3v = 1. Multiply by the

integrating factor e3t to get

∂

∂t
(ve3t) = e3t.

Integrate with respect to t to get

v =
1

3
+ φ(x)e−3t,

where φ is an arbitrary function. Thus

u =

∫

vdx =
1

3
x+ φ(x)e−3t + ψ(t).

Exercise 9. Let w = eu or u = lnw Then ut = wt/w and ux = wx/w,

giving wxx = wxx/w − w2
x/w

2. Substituting into the PDE for u gives, upon

cancelation, wt = wxx.

Exercise 10. It is straightforward to verify that u = arctan(y/x) satisfies the

Laplace equation. We want u → 1 as y → 0 (x > 0), and u → −1 as y → 0

(x < 0). So try

u = 1− 2

π
arctan

y

x
.

We want the branch of arctan z with 0 < arctan z < π/2 for z > 0 and π/2 <

arctan z < π for z < 0.

Exercise 11. Differentiate under the integral sign to obtain

uxx =

∫ ∞

0

−ξ2c(ξ)e−ξy sin(ξx)dξ

and

uyy =

∫ ∞

0

ξ2c(ξ)e−ξy sin(ξx)dξ.

Thus
uxx + uyy = 0.

Exercise 12b; 13b. Substitute u = Aei(kx−ωt) into ut + uxxx = 0 to get the

dispersion relation ω = −k3. The solution is thus

u(x, t) = Aei(kx+k3t) = Aeik(x+k3t).

The dispersion relation is real so the PDE is dispersive. Taking the real part

we get u(x, t) = A cos(k(x + k2)t), which is a left traveling wave moving with

speed k2. Waves with larger wave number move faster.
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1.2 Conservation Laws

Exercise 1. Since A = A(x) depends on x, it cannot cancel from the conser-

vation law and we obtain

A(x)ut = −(A(x)φ)x +A(x)f.

Exercise 2. The solution to the initial value problem is u(x, t) = e−(x−ct)2.

When c = 2 the wave forms are bell-shaped curves moving to the right at speed

2.

Exercise 3. Letting ξ = x− ct and τ = t, the PDE ut + cux = −λu becomes

Uτ = −λU or U = φ(ξ)e−λt. Thus

u(x, t) = φ(x− ct)e−λt.

Exercise 4. In the new dependent variable w the equation becomes wt+cwx =

0.

Exercise 5. In preparation.

Exercise 7. From Exercise 3 we have the general solution u(x, t) = φ(x −
ct)e−λt. For x > ct we apply the initial condition u(x, 0) = 0 to get φ ≡ 0.

Therefore u(x, t) = 0 in x > ct. For x < ct we apply the boundary condition

u(0, t) = g(t) to get φ(−ct)e−λt = g(t) or φ(t) = eλt/cg(−t/c). Therefore

u(x, t) = g(t− x/c)e−λx/c in 0 ≤ x < ct.

Exercise 8. Making the transformation of variables ξ = x − t, τ = t, the

PDE becomes Uτ − 3U = τ , where U = U(ξ, τ). Multiplying through by the

integrating factor exp(−3τ) and then integrating with respect to τ gives

U = −
(

τ

3
+

1

9

)

+ φ(ξ)e3τ ,

or

u = −
(

t

3
+

1

9

)

+ φ(x − t)e3t.

Setting t = 0 gives φ(x) = x2 + 1/9. Therefore

u = −
(

t

3
+

1

9

)

+ ((x− t)2 +
1

9
)e3t.

Exercise 9. Letting n = n(x, t) denote the concentration in mass per unit

volume, we have the flux φ = cn and so we get the conservation law

nt + cnx = −r
√
n 0 < x < l, t > 0.
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The initial condition is u(x, 0) = 0 and the boundary condition is u(0, t) = n0.

To solve the equation go to characteristic coordinates ξ = x−ct and τ = t. Then

the PDE for N = N(ξ, τ) is Nτ = −r
√
N . Separate variables and integrate to

get
2
√
N = −rτ +Φ(ξ).

Thus
2
√
n = −rt+Φ(x− ct).

Because the state ahead of the leading signal x = ct is zero (no nutrients have

arrived) we have u(x, t) ≡ 0 for x > ct. For x < ct, behind the leading signal,

we compute Φ from the boundary condition to be Φ(t) = 2
√
no − rt/c. Thus,

for 0 < x < ct we have

2
√
n = −rt+ 2

√
n0 −

r

c
(x − ct).

Along x = l we have n = 0 up until the signal arrives, i.e., for 0 < t < l/c. For

t > l/c we have

n(l, t) = (
√
n0 −

rl

2c
)2.

Exercise 10. The graph of the function u = G(x + ct) is the graph of the

function y = G(x) shifted to the left ct distance units. Thus, as t increases the

profile G(x+ ct) moves to the left at speed c. To solve the equation ut − cux =

F (x, t, u) on would transform the independent variables via x = x+ ct, τ = t.

Exercise 11. The conservation law for traffic flow is

ut + φx = 0.

If φ(u) = αu(β − u) is chosen as the flux law, then the cars are jammed at the

density u = β, giving no movement or flux; if u = 0 there is no flux because

there are no cars. The nonlinear PDE is

ut + (αu(β − u))x = 0,

or
ut + α(β − 2u)ux = 0.

Exercise 12. Transform to characteristic coordinates ξ = x− vt, τ = t to get

Uτ = − αU

β + U
, U = U(ξ, τ).

Separating variables and integrating yields, upon applying the initial condition

and simplifying, the implicit equation

u− αt− f(x) = β ln(u/f(x)).

Graphing the right and left sides of this equation versus u (treating x and t > 0

as parameters) shows that there are two crossings, or two roots u; the solution

is the smaller of the two.



1.3 Diffusion 5

1.3 Diffusion

Exercise 1. We haveuxx(6, T ) ≈ (58−2(64)+72)/22 = 0.5. Since ut = kuxx >

0, the temperatue will increase. We have

ut(T, 6) ≈
u(T + 0.5, 6)− u(T, 6)

0.5
≈ kuxx(T, 6) ≈ 0.02(0.5).

This gives u(T + 0.5, 6) ≈ 64.005.

Exercise 2. Taking the time derivative

E′(t) =
d

dt

∫ l

0

u2dx =

∫ l

0

2uutdx = 2k

∫ l

0

uuxxdx

= 2kuux |l0 −2k

∫

u2x ≤ 0.

Thus E in nonincreasing, so E(t) ≤ E(0) =
∫ l

0
u0(x)dx. Next, if u0 ≡ 0 then

E(0) = 0. Therefore E(t) ≥ 0, E′(t) ≤ 0, E(0) = 0. It follows that E(t) = 0.

Consequently u(x, t) = 0.

Exercise 3. Take

w(x, t) = u(x, t)− h(t)− g(t)

l
(x− l)− g(t).

Then w will satisfy homogeneous boundary conditions. We get the problem

wt = kwxx − F (x, t), 0 < x < l, t > 0

w(0, t) = w(l, t) = 0, t > 0,

w(x, 0) = G(x), 0 < x < l,

where

F (x, t) =
l − x

l
(h′(t)−g′(t))−g′(t), G(x) = u(x, 0)−h(0)− g(0)

l
(x−l)−g(0).

Exercise 4. The steady state equation is u′′− (h/k)u = 0 which has exponen-

tial solution, u(x) = A exp(
√

h/kx) + B exp(−
√

h/kx). Apply the boundary

conditions u(0) = u(1) = 1.

Exercise 6. The steady state problem for u = u(x) is

ku′′ + 1 = 0, u(0) = 0, u(1) = 1.

Solving this boundary value problem by direct integration gives the steady

state solution

u(x) = − 1

2k
x2 = (1 +

1

2k
)x,
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which is a concave down parabolic temperature distribution.

Exercise 7. The steady-state heat distribution u = u(x) satisfies

ku′′ − au = 0, u(0) = 1, u(1) = 1.

The general solution is u = c1 cosh
√

a/kx + c2 sinh
√

a/kx. The constants c1
and c2 can be determined by the boundary conditions.

Exercise 8. The boundary value problem is

ut = Duxx + ru(1− u/K), 0 < x < l, t > 0,

ux(0, t) = ux(l, t) = 0, t > 0,

u(x, 0) = ax(l − x), 0 < x < l.

For long times we expect a steady state density u = u(x) to satisfy −Du′′ +
ru(1 − u/K) = 0 with insulated boundary conditions u′(0) = u′(l) = 0. There

are two obvious solutions to this problem, u = 0 and u = K. From what we

know about the logistics equation

du

dt
= ru(1− u/K),

(where there is no spatial dependence and no diffusion, and u = u(t)), we

might expect the the solution to the problem to approach the stable equilibrium

u = K. In drawing profiles, note that the maximum of the initial condition is

al2/4. So the two cases depend on whether this maximum is below the carrying

capacity or above it. For example, in the case al2/4 < K we expect the profiles

to approach u = K from below.

Exercise 9. These facts are directly verified using the chain rule to change

variables in the equation.

1.4 Diffusion and Randomness

Exercise 1. We have

ut = (D(u)ux)x = D(u)uxx +D(u)xux = D(u)uxx +D′(u)uxux.

Exercise 2. The steady state equation is (Du′)′ = 0, where u = u(x). If D =

constant then u′′ = 0 which has a linear solution u(x) = ax+ b. Applying the

two end conditions (u(0) = 4 and u′(2) = 1) gives b = 4 and a = 1. Thus

u(x) = x + 4. The left boundary condition means the concentration is held



1.4 Diffusion and Randomness 7

at the value u = 4, and the right boundary condition means −Du′(2) = −D,
meaning that the flux is −D. So matter is entering the system at L = 2 (moving

left). In the second case we have

(

1

1 + x
u′
)′

= 0.

Therefore
1

1 + x
u′ = a

or

u′ = a(1 + x).

The right boundary condition gives a = 1/3. Integrating again and applying

the left boundary condition gives

u(x) =
1

3
x+

1

6
x2 + 4.

In the third case the equation is

(uu′)′ = 0,

or uu′ = a.This is the same as

1

2
(u2)′ = a,

which gives
1

2
u2 = ax+ b.

From the left boundary condition b = 8. Hence

u(x) =
√
2ax+ 16.

Now the right boundary condition can be used to obtain the other constant a

. Proceeding,

u′(2) =
a

2
√
a+ 4

= 1.

Thus a = 2 +
√
20.

Exercise 3. The general solution of Du′′− cu′ = 0 is u(x) = a+ becx/D. In the

second case the equation is Du′′ − cu′ + ru = 0. The roots of the characteristic

polynomial are

λ± =
c

2D
±

√
c2 − 4Dr

2D
.
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There are three cases, depending upon upon the discriminant c2 − 4Dr. If

c2 − 4Dr = 0 then the roots are equal ( c
2D ) and the general solution has the

form

u(x) = aecx/2D + bxecx/2D.

If c2 − 4Dr > 0 then there are two real roots and the general solution is

u(x) = aeλ+x + beλ−
x.

If c2− 4Dr < 0 then the roots are complex and the general solution is given by

u(x) = aecx/2D

(

a cos

√
4Dr − c2

2D
x+ b sin

√
4Dr − c2

2D
x

)

.

Exercise 4. If u is the concentration, use the notation u = v for 0 < x < L/2,

and u = w for L/2 < x < L.The PDE model is then

vt = vxx − λv, 0 < x < L/2,

wt = wxx − λw, L/2 < x < L.

The boundary conditions are clearly v(0, t) = w(L, t) = 0, and continuity at

the midpoint forces v(L/2) = w(L/2). To get a condition for the flux at the

midpoint we take a small interval [L/2−ǫ, L/2+ǫ]. The flux in at the left minus

the flux out at the right must equal 1, the amount of the source. In symbols,

−vx(L/2− ǫ, t) + wx(L/2 + ǫ) = 1.

Taking the limit as ǫ→ 0 gives

−vx(L/2, t) + wx(L/2) = 1.

So, there is a jump in the derivative of the concentration at the point of the

source. The steady state system is

v′′ − λv = 0, 0 < x < L/2,

w′′ − λw = 0, L/2 < x < L,

with conditions

v(0) = w(L) = 0,

v(L/2) = w(L/2),

−v′(L/2) + w′(L/2) = 1.

Let r =
√
λ. The general solutions to the DEs are

v = aerx + be−rx, w = cerx + de−rx.
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The four constants a, b, c, dmay be determined by the four auxiliary conditions.

Exercise 5. The steady state equations are

v′′ = 0, 0 < x < ξ,

w′′ = 0, ξ < x < L,

The conditions are

v(0) = w(L) = 0,

v(ξ) = w(ξ),

−v′(ξ) + w′(ξ) = 1.

Use these four conditions to determine the four constants in the general solution

to the DEs. We finally obtain the solution

v(x) =
ξ − L

L
x, w(x) =

x− L

L
ξ.

Exercise 6. The equation is

ut = uxx − ux, 0 < x < L.

(With no loss of generality we have taken the constants to be equal to one).

Integrating from x = 0 to x = L gives

∫ L

0

utdx =

∫ L

0

uxxdx−
∫ L

0

uxdx.

Using the fundamental theorem of calculus and bringing out the time derivative

gives

∂

∂t

∫ L

0

udx = ux(L, t)−ux(0, t)−u(L, t)+u(0, t) = −flux(L, t)+flux(0, t) = 0.

Exercise 7. The model is

ut = Duxx + agux,

u(∞, t) = 0, −Dux(0, t)− agu(0, t) = 0.

The first boundary condition states the concentration is zero at the bottom (a

great depth), and the second condition states that the flux through the surface

is zero, i.e., no plankton pass through the surface. The steady state equation is

Du′′ + agu′ = 0,
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which has general solution

u(x) = A+Be−agx/D.

The condition u(∞) = 0 forces A=0. The boundary condition −Du′(0) −
agu(0) = 0 is satisfied identically. So we have

u(x) = u(0)e−agx/D.

Exercise 8. Notice that the dimensions of D are length-squared per unit time,

so we use D = L2/T , where L and T are the characteristic length and time,

respectively. For sucrose,

L =
√
DT =

√

(4.6× 10−6)(60× 60× 24) = 0.63 cm.

For the insect,

T =
L2

D
=

100002

2.0× 10−1
= 5× 108 sec = 6000 days.

Exercise 9. Solve each of the DEs, in linear, cylindrical, and spherical coordi-

nates, respectively:

Du′′ = 0,

D

r
(ru′)′ = 0,

D

ρ2
(ρ2u′)′ = 0.

Exercise 10. Let q = 1− p and begin with the equation

u(x, t+ τ) − u(x, t) = pu(x− h, t) + qu(x+ h, t)− pu(x, t)− qu(x, t),

or

u(x, t+ τ) = pu(x− h, t) + qu(x+ h, t).

Expanding in Taylor series (u and its derivatives are evaluated at (x, t) ),

u+ utτ + · · · = pu− puxh+
1

2
puxxh

2 + qu+ quxh+
1

2
quxxh

2 + · · ·,

or

τut = (1 − 2p)uxh+
1

2
uxxh

2 + · · ·.

Then

ut = (1 − 2p)ux
h

τ
+
h2

2τ
uxx + · · ·.
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Taking the limit as h, τ → 0 gives

ut = cux +Duxx,

with appropriately defined special limits.

Exercise 11. Similar to the example in the text.

Exercise 12. Draw two concentric circles of radius r = a and r = b. The total

amount of material in between is

2π

∫ b

a

u(r, t)rdr.

The flux through the circle r = a is −2πaDur(a, t) and the flux through r=b

is −2πbDur(b, t). The time rate of change of the total amount of material in

between equals the flux in minus the flux out, or

2π
∂

∂t

∫ b

a

u(r, t)rdr. = −2πaDur(a, t) + 2πbDur(b, t),

or
∫ b

a

ut(r, t)rdr =

∫ b

a

D
∂

∂r
(rur(r, t))dr.

Since a and b are arbitrary,

ut(r, t)r = D
∂

∂r
(rur(r, t)).

1.5 Vibrations and Acoustics

Exercise 1. In balancing the vertical forces, add the term −
∫ l

0
gρ0(x)dx to

the right side to account for gravity acting downward.

Exercise 2. In balancing the vertical forces, add the term −intl0ρ0(x)kutdx to

the right side to account for damping.

Exercise 4. The initial conditions are found by setting t = 0 to obtain

un(x, 0) = sin
nπx

l
.

The temporal frequency of the oscillation is ω ≡ nπc/l with period 2π/ω. As

the length l increases, the frequency decreases, making the period of oscillation

longer. The tension is τ satisfies ρ0c
2 = τ . As τ increases the frequency increases
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so the oscillations are faster. Thus, tighter strings produce higher frequencies;

longer string produce lower frequencies.

Exercise 5. The calculation follows directly by following the hint.

Exercise 6. We have

c2 =
dp

dρ
= kγργ−1 =

γp

ρ
.

Exercise 8. Assume ρ̃(x, t) = F (x − ct), a right traveling wave, where F is

to be determined. Then this satisfies the wave equation automatically and we

have ρ̃(0, t) = F (−ct) = 1− 2 cos t, which gives F (t) = 1− 2 cos(−t/c). Then

ρ̃(x, t) = 1− 2 cos(t− x/c).

Exercise 9. Differentiate the equations with respect to x and with respect to

t. The speed of waves is
√

1/LC.

1.6 Quantum Mechanics

Exercise 1. This is a straightforward verification using rules of differentiation.

Exercise 2. Substitute y = e−ax2

into the Schrödinger equation to get

E = ~
2a/m, a2 =

1

4
mk/~2.

This gives

y(x) = Ce−0.5
√
mkx2/~.

To find C impose the normality condition
∫

R
y(x)2dx = 1 and obtain

C =

(

mk

2π~

)1/4

.

Exercise 4. Let b2 ≡ 2mE/~2. Then the ODE

y′′ + by = 0

has general solution

y(x) = A sin bx+B cos bx.
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The condition y(0) = 0 forces B = 0. The condition y(π) = 0 forces sin bπ =

0, and so (assuming B 6= 0) b must be an integer, i.e., n2 ≡ 2mE/~2. The

probability density functions are

y2n(x) = B2 sin2 nx

with the constants B chosen such that
∫ π

0 y2dx = 1. One obtains B =
√

2/π.

The probabilities are
∫ 0

0

.25y2n(x)dx.

1.7 Heat Flow in Three Dimensions

In these exercises we use the notation ∇ for the gradient operation grad.

Exercise 1. We have

div(∇u) = div(ux, uy, uz) = uxx + uyy + uzz.

Exercise 2. For nonhomogeneous media the conservation law (1.53) becomes

cρut − div(K(x, y, z)∇u) = f.

So the conductivity K cannot be brought out of the divergence.

Exercise 3. Integrate both sides of the PDE over Ω to get
∫

Ω

fdV =

∫

Ω

−K∆udV =

∫

Ω

−Kdiv(∇u)dV

=

∫

∂Ω

−K ∇u · ndA =

∫

∂Ω

gdA.

The left side is the net heat generated inside Ω from sources; the right side is

the net heat passing through the boundary. For steady-state conditions, these

must balance.

Exercise 4. Follow the suggestion and use the divergence theorem.

Exercise 5. Follow the suggestion in the hint to obtain

−
∫

Ω

∇u · ∇u dV = λ

∫

Ω

u2dV.

Both integrals are nonnegative, and so λ must be nonpositive. Note that λ 6= 0;

otherwise u = 0.
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Exercise 6. This calculation is in the proof of Theorem 4.23 of the text.

Exercise 7. Replace φ in equations (1.52) by the given expression and proceed

a indicated in the text.

1.8 Laplace’s Equation

Exercise 1. The temperature at the origin is the average value of the temper-

ature around the boundary, or

u(0, 0) =
1

2π

∫ 2π

0

(3 sin 2θ + 1)dθ.

The maximum and minimum must occur on the boundary. The function f(θ) =

3 sin 2θ+1 has an extremum when f ′(θ) = 0 or 6 cos 2θ = 0. The maxima then

occur at θ = π/4, 5π/4 and the minima occur at θ = 3π/4, 7π/4.

Exercise 3. We have u(x) = ax+b. But u(0) = b = T0 and u(l) = al+T0 = T1,

giving a = (T1 − T0)/l. Thus

u(x) =
T1 − T0

l
x+ T0,

which is a straight line connecting the endpoint temperatures. When the right

end is insulated the boundary condition becomes u′(l) = 0. Now we have a = 0

and b = T0 which gives the constant distribution

u(x) = T0.

Exercise 5. The boundary value problem is

−((1 + x2)u′)′ = 0, u(0) = 1, u(1) = 4.

Integrating gives (1 + x2)u′ = c1, or u
′ = c1/(1 + x2). Integrating again gives

u(x) = c1 arctanx+ c2.

But u(0) = c2 = 1, and u(1) = c1 arctan 1 + 1 = 4. Then c1 = 6/π.

Exercise 6. Assume u = u(r) where r =
√

x2 + y2. The chain rule gives

ux = u′(r)rx = u′(r)
x

√

x2 + y2
.
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Then, differentiating again using the product rule and the chain rule gives

uxx =
x2

r2
u′′(r) +

y2

r3
.

Similarly

uyy =
y2

r2
u′′(r) +

x2

r3
.

Then

∆u = u′′ +
1

r
u′ = 0.

This last equation can be written

(ru′)′ = 0

which gives the radial solutions

u = a ln r + b,

which are logarithmic. The one dimensional Laplace equation u′′ = 0 has linear

solutions u = ax+ b, and the three dimensional Laplace equation has algebraic

power solutions u = aρ−1 + b. In the two dimensional problem we have u(r) =

a ln r + b with u(1) = 0 and u(2) = 10. Then b = 0 and a = 10/ ln 2. Thus

u(r) = 10
ln r

ln 2
.

Exercise 9. We have ∇V = E. Taking the divergence of both sides gives

∆V = div∇V = div E = 0.

1.9 Classification of PDEs

Exercise 1. The equation

uxx + 2kuxt + k2utt = 0

is parabolic because B2 − 4AC = 4k2 − 4k2 = 0. Make the transformation

x = ξ, τ = x− (B/2C)t = x− t/k.

Then the PDE reduces to the canonical form Uξξ = 0. Solve by direct integra-

tion. Then Uξ = f(τ) and U = ξf(τ) + g(τ). Therefore

u = xf(x− t/k) + g(x− t/k),
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where f, g are arbitrary functions.

Exercise 2. The equation 2uxx − 4uxt + ux = 0 is hyperbolic. Make the

transformation ξ = 2x+ t, τ = t and the PDE reduces to the canonical form

Uξτ − 1

4
Uξ = 0.

Make the substitution V = Uξ to get Vτ = 0.25V , or V = F (ξ)eτ/4. Then

U = f(ξ)eτ/4 + g(τ), giving

u = f(2x+ t)et/4 + g(t).

Exercise 3. The equation xuxx − 4uxt = 0 is hyperbolic. Under the transfor-

mation ξ = t, τ = t+ 4 lnx the equation reduces to

Uξτ +
1

4
U = 0.

Proceeding as in Exercise 2 we obtain

u = f(t+ 4 lnx)et/4 + g(t).

Exercise 5. The discriminant for the PDE

uxx − 6uxy + 12uyy = 0

is D = −12 is negative and therefore it is elliptic. Take b = 1/4 +
√
3i/12 and

define the complex transformation ξ = x+ by, τ = x+ by. Then take

α =
1

2
(ξ + τ) = x+

1

4
y

and

β =
1

2i
(ξ − τ) =

√
3

12
y.

Then the PDE reduces to Laplace’s equation uαα + uββ = 0.

Exercise 6. Change variables as indicated.

Exercise 7a. Hyperbolic when y < 1/x, parabolic when y = 1/x, elliptic when

y > 1/x.



2
Partial Differential Equations on

Unbounded Domains

2.1 Cauchy Problem for the Heat Equation

Exercise 1a. Making the transformation r = (x− y)/
√
4kt we have

u(x, t) =

∫ 1

−1

1√
4πkt

e−(x−y)2/4ktdy

= −
∫ (x−1)/

√
4kt

(x+1)/
√
4kt

1√
π
e−r2dr

=
1

2

(

erf
(

(x+ 1)/
√
4kt
)

− erf
(

(x− 1)/
√
4kt
))

.

Exercise 1b. We have

u(x, t) =

∫ ∞

0

1√
4πkt

e−(x−y)2/4kte−ydy.

Now complete the square in the exponent of e and write it as

− (x− y)2

4kt
− y = −x

2 − 2xy + y2 + 4kty

4kt

= −y + 2kt− x)2

4kt
+ kt− x.
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Then make the substitution in the integral

r =
y + 2kt− x√

4kt

Then

u(x, t) =
1√
π
ekt−x

∫ ∞

(2kt−x)/
√
4kt

e−r2dr

=
1

2
ekt−x

(

1− erf
(

(2kt− x)/
√
4kt
))

.

Exercise 2. We have

|u(x, t)| ≤
∫

R

|G(x− y, t)||φ(y)|dy ≤M

∫

R

G(x − y, t)dy =M.

Exercise 3. Use

erf(z) =
2√
π

∫ z

0

e−r2dr

=
2√
π

∫ z

0

(1− r2 + · · · )dr

=
2√
π
(z − z3

3
+ · · · ).

This gives

w(x0, t) =
1

2
+

x0

π
√
t
+ · · · .

Exercise 4. The verification is straightforward. We guess the Green’s function

in two dimensions to be

g(x, y, t) = G(x, t)G(y, t)

=
1√
4πkt

e−x2/4kt 1√
4πkt

e−y2/4kt

=
1

4πkt
e−(x2+y2)/4kt,

where G is the Green’s function in one dimension. Thus g is the temperature

distribution caused by a point source at (x, y) = (0, 0) at t = 0. This guess

gives the correct expression. Then, by superposition, we have the solution

u(x, y, t) =

∫

R2

1

4πkt
e−((x−ξ)2+(y−η)2)/4ktψ(ξ, η)dξdη.
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Exercise 6. Using the substitution r = x/
√
4kt we get

∫

R

G(x, t)dx =
1√
π

∫

R

e−r2dr = 1.

Exercise 7. Verification is straightforward. The result does not contradict the

theorem because the initial condition is not bounded.

2.2 Cauchy Problem for the Wave Equation

Exercise 1. Applying the initial conditions to the general solution gives the

two equations

F (x) +G(x) = f(x), −cF ′(x) + cG′(x) = g(x).

We must solve these to determine the arbitrary functions F and G. Integrate

the second equation to get

−cF (x) + cG(x) =

∫ x

0

g(s)ds+ C.

Now we have two linear equations for F andG that we can solve simultaneously.

Exercise 2. Using d’Alembert’s formula we obtain

u(x, t) =
1

2c

∫ x+ct

x−ct

ds

1 + 0.25s2

=
1

2c
2 arctan(s/2) |x+ct

x−ct

=
1

c
(arctan((x+ ct)/2)− arctan((x− ct)/2)).

Exercise 4. Let u = F (x− ct). Then ux(0, t) = F ′(−ct) = s(t). Then

F (t) =

∫ t

0

s(−r/c)dr +K.

Then

u(x, t) = −1

c

∫ t−x/c

0

s(y)dy +K.
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Exercise 5. Letting u = U/ρ we have

utt = Utt/ρ, uρ = Uρ/ρ− U/ρ2

and
uρρ = Uρρ/ρ− 2Uρ/ρ

2 + 2U/ρ3.

Substituting these quantities into the wave equation gives

Utt = c2Uρρ

which is the ordinary wave equation with general solution

U(ρ, t) = F (ρ− ct) +G(ρ+ ct).

Then
u(ρ, t) =

1

r
(F (ρ− ct) +G(ρ+ ct)).

As a spherical wave propagates outward in space its energy is spread out over a

larger volume, and therefore it seems reasonable that its amplitude decreases.

Exercise 6. The exact solution is, by d’Alembert’s formula,

u(x, t) =
1

2
(e−|x−ct| + e−|x+ct|) +

1

2c
(sin(x+ ct)− sin(x − ct)).

Exercise 7. Use the fact that u is has the same value along a characteristic.

Exercise 8. Write

v =

∫

R

H(s, t)u(x, s)ds,

where
h(s, t) =

1
√

4πt(k/c2)
e−s2/(4t(k/c2)),

which is the heat kernel with k replaced by k/c2. Thus H satisfies

Ht −
k

c2
Hxx = 0.

Then, we have

vt − kvxx =

∫

R

(Ht(s, t)u(x, s)− kH(s, t)uxx(x, s))ds

=

∫

R

(Ht(s, t)u(x, s)− (k/c2)H(s, t)uss(x, s))ds

where, in the last step, we used the fact that u satisfies the wave equation. Now

integrate the second term in the last expression by parts twice. The generated

boundary terms will vanish since H and Hs go to zero as |s| → ∞. Then we

get

vt − kvxx =

∫

R

(Ht(s, t)u(x, s)− (k/c2)Hss(s, t)u(x, s))ds = 0.
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2.3 Well-Posed Problems

Exercise 1. Consider the two problems

ut + uxx = 0, x ∈ R, t > 0,

u(x, 0) = f(x), x ∈ R

If f(x) = 1 the solution is u(x, t) = 1. If f(x) = 1+n−1 sinnx, which is a small

change in initial data, then the solution is

u(x, t) = 1 +
1

n
en

2t sinnx,

which is a large change in the solution. So the solution does not depend con-

tinuously on the initial data.

Exercise 2. Integrating twice, the general solution to uxy = 0 is

u(x, y) = F (x) +G(y),

where F and G are arbitrary functions. Note that the equation is hyperbolic

and therefore we expect the problem to be an evolution problem where data is

carried forward from one boundary to another; so a boundary value problem

should not be well-posed since the boundary data may be incompatible. To

observe this, note that

u(x, 0) = F (x) +G(0) = f(x). u(x, 1) = F (x) +G(1) = g(x),

where f and g are data imposed along y = 0 and y = 1, respectively. But these

last equations imply that f and g differ by a constant, which may not be true.

Exercise 3. We subtract the two solutions given by d’Alembert’s formula, take

the absolute value, and use the triangle inequality to get

|u1 − u2| ≤ 1

2
|f1(x− ct)− f2(x − ct)|+ 1

2
|f1(x+ ct)− f2(x+ ct)|

+
1

2c

∫ x+ct

x−ct

|g1(s)− g2(s)|ds

≤ 1

2
δ1 +

1

2
δ1 +

1

2c

∫ x+ct

x−ct

δ2ds

= δ1 +
1

2c
δ2(2ct)

≤ δ1 + Tδ2.
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2.4 Semi-Infinite Domains

Exercise 2. We have

u(x, t) =

∫ ∞

0

(G(x− y, t)−G(x+ y, t))dy = erf (x/
√
4kt).

Exercise 3. For x > ct we use d’Alembert’s formula to get

u(x, t) =
1

2
((x− ct)e−(x−ct) + (x+ ct)e−(x+ct)).

For 0 < x < ct we have from (2.29) in the text

u(x, t) =
1

2
((x+ ct)e−(x+ct) − (ct− x)e−(ct−x)).

Exercise 4. Letting w(x, t) = u(x, t)− 1 we get the problem

wt = kwxx, w(0, t) = 0, t > 0, ;w(x, 0) = −1, x > 0.

Now we can apply the result of the text to get

w(x, t) =

∫ ∞

0

(G(x − y, t)−G(x + y, t))(−1)dy = −erf (x/
√
4kt).

Then

u(x, t) = 1− erf (x/
√
4kt).

Exercise 5. The problem is

ut = kuxx, x > 0, t > 0,

u(x, 0) = 7000, x > 0,

u(0, t) = 0, t > 0.

From Exercise 2 we know the temperature is

u(x, t) = 7000 erf (x/
√
4kt) = 7000

2√
π

∫ x/
√
4kt

0

e−r2dr.

The geothermal gradient at the current time tc is

ux(0, tc) =
7000√
πktc

= 3.7× 10−4.
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Solving for t gives

tc = 1.624× 1016 sec = 5.15× 108 yrs.

This gives a very low estimate; the age of the earth is thought to be about 15

billion years.

There are many ways to estimate the amount of heat lost. One method is

as follows. At t = 0 the total amount of heat was
∫

S

ρcu dV = 7000ρc
4

3
πR3 = 29321ρcR3,

where S is the sphere of radius R = 4000 miles and density ρ and specific

heat c. The amount of heat leaked out can be calculated by integrating the

geothermal gradient up to the present day tc. Thus, the amount leaked out is

approximately

(4πR2)

∫ tc

0

−Kux(0, t)dt == −4πR2ρck(7000)

∫ tc

0

1√
πkt

dt

== −ρcR2(1.06× 1012).

So the ratio of the heat lost to the total heat is

ρcR2(1.06× 1012)

29321ρcR3
=

3.62× 107

R
= 5.6.

Exercise 6. Follow the suggested steps. Exercise 7. The left side of the equa-

tion is the flux through the surface. The first term on the right is Newton’s law

of cooling and the second term is the radiation heating.

2.5 Sources and Duhamel’s Principle

Exercise 1. The solution is

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)

sin sds

=
1

c2
sinx− 1

2c2
(sin(x− ct) + sin(x+ ct))
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Exercise 2. The solution is

u(x, t) =

∫ t

0

∫ ∞

−∞
G(x− y, t− τ) sin y dydτ,

where G is the heat kernel.

Exercise 3. The problem

wt(x, t, τ) + cwx(x, t, τ) = 0, w(x, 0, τ) = f(x, τ),

has solution (see Chapter 1)

w(x, t, τ) = f(x− ct, τ).

Therefore, by Duhamel’s principle, the solution to the original problem is

u(x, t) =

∫ t

0

f(x− c(t− τ), τ)dτ.

Applying this formula when f(x, t) = xe−t and c = 2 gives

u(x, t) =

∫ t

0

(x− 2(t− τ))e−τdτ.

This integral can be calculated using integration by parts or a computer algebra

program. We get

u(x, t) = −(x− 2t)(e−t − 1)− 2te−t + 2(1− e−t).

2.6 Laplace Transforms

Exercise 4. Using integration by parts, we have

L

(
∫ t

0

f(τ)dτ

)

=

∫ ∞

0

(
∫ t

0

f(τ)dτ

)

e−stdt

= −1

s

∫ ∞

0

(
∫ t

0

f(τ)dτ

)

d

ds
e−stdt

= −1

s

∫ t

0

f(τ)dτ · e−st |∞0 +
1

s

∫ ∞

0

f(t)e−stdt

=
1

s
F (s).
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Exercise 5. Since H = 0 for x < a we have

L (H(t− a)f(t− a)) =

∫ ∞

a

f(t− a)e−stdt

=

∫ ∞

0

f(τ)e−s(τ+a)dτ = e−asF (s).

where we used the substitution τ = t− a, dτ = dt.

Exercise 8. The model is

ut = uxx, x > 0, t > 0

u(x, 0) = u0, x > 0

−ux(0, t) = −u(0, t).

Taking the Laplace transform of the PDE we get

Uxx − sU = −u0.

The bounded solution is

U(x, s) = a(s)e−x
√
s +

u0
s
.

The radiation boundary condition gives

−a(s)
√
s = a(s) +

u0
s

or

a(s) = − u0
s(1 +

√
s)
.

Therefore, in the transform domain

U(x, s) = − u0
s(1 +

√
s)
e−x

√
s +

u0
s
.

Using a table of Laplace transforms we find

u(x, t) = u0 − u0

[

erfc

(

x√
4t

)

− erfc

(√
t+

x√
4t

)

ex+t

]

.

where erfc(z) = 1− erf(z).

Exercise 10. Taking the Laplace transform of the PDE gives, using the initial

conditions,

Uxx −
s2

c2
U = − g

sc2
.
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The general solution is

U(x, s) = A(s)e−sx/c +B(s)esx/c +
g

s3
.

To maintain boundedness, set B(s) = 0. Now U(0, s) = 0 gives A(s) = −g/s3.
Thus

U(x, s) = − g

s3
e−sx/c +

g

s3

is the solution in the transform domain. Now, from a table or computer algebra

program,

L−1

(

1

s3

)

=
t2

2
, L−1(F (s)e−as) = H(t− a)f(t− a).

Therefore

L−1

(

1

s3
e−xs/c

)

= H(t− x/c)
(t− x/c)2

2
.

Hence

u(x, t) =
gt2

2
− gH(t− x/c)

(t− x/c)2

2
.

Exercise 11. Taking the Laplace transform of the PDE while using the initial

condition gives, for U = U(x, y, s),

Uyy − pU = 0.

The bounded solution of this equation is

U = a(x, s)e−y
√
s.

The boundary condition at y = 0 gives sU(x, o, s) = −Ux(x, 0, s) or a = −ax,
or

a(x, s) = f(s)e−xs.

The boundary condition at x = u = 0 forces f(s) = 1/s. Therefore

U(x, y, s) =
1

s
e−xse−y

√
s.

From the table of transforms

u(x, y, t) = 1− erf((y − x)/
√
4t).

Exercise 13. Taking the Laplace transform of the PDE gives, using the initial

conditions,

Uxx − s2

c2
U = 0.
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The general solution is

U(x, s) = A(s)e−sx/c +B(s)esx/c.

To maintain boundedness, set B(s) = 0. Now The boundary condition at x = 0

gives U(0, s) = G(s) which forces A(s) = G(s). Thus

U(x, s) = G(s)e−sx/c.

Therefore, using Exercise 4, we get

u(x, t) = H(t− x/c)g(t− x/c).

Exercise 14. The problem is

ut = uxx, x, t > 0

u(x, 0) = 0, x > 0

u(0, t) = f(t), t > 0.

Taking Laplace transforms and solving gives

U(x, s) = F (s)e−x
√
s

Here we have discarded the unbounded part of the solution. So, by convolution,

u(x, t) =

∫ t

0

f(τ)
x

√

4π(t− τ)3
e−x2/4(t−τ)dτ.

Hence, evaluating at x = 1,

U(t) =

∫ t

0

f(τ)
1

√

4π(t− τ)3
e−1/4(t−τ)dτ,

which is an integral equation for f(t). Suppose f(t) = f0 is constant and

U(5) = 10. Then

20
√
π

f0
=

∫ 5

0

e−1/4(5−τ)

√

4π(5− τ)3
dτ = 2 erfc (1/

√
5),

where erfc = 1− erf. Thus f0 = 59.9 degrees.
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2.7 Fourier Transforms

Exercise 1. The convolution is calculated from

x ⋆ e−x2

=

∫ ∞

−∞
(y − x)e−y2

dy.

Exercise 2. From the definition we have

F−1(e−a|ξ|)) =
1

2π

∫ ∞

−∞
e−a|ξ|e−ixξdξ

=
1

2π

∫ 0

−∞
eaξe−ixξdξ +

1

2π

∫ ∞

0

e−aξe−ixξdξ

=
1

2π

∫ 0

−∞
eaξ−ixξdξ +

1

2π

∫ ∞

0

e−aξ−ixξdξ

=
1

2π

1

a− ix
e(a−ix)ξ |0−∞ +

1

2π

1

−a− ix
e(−a−ix)ξ |∞0

=
a

π

1

a2 + x2
.

Exercise 3a. Using the definition of the Fourier transform

2πF−1(−ξ) =
∫ ∞

−∞
u(x)e−i(−ξ)xdx = F(u)(ξ).

Exercise 3b. From the definition,

û(ξ + a) =

∫ ∞

−∞
u(x)ei(ξ+a)xdx

=

∫ ∞

−∞
u(x)eiaxeiξxdx

= F(eiaxu)(ξ).

Exercise 3c. Use 3(a) or, from the definition,

F(u(x+ a)) =

∫ ∞

−∞
u(x+ a)eiξxdx =

∫ ∞

−∞
u(y)eiξ(y−a)dy = e−iaξû(ξ).
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Exercise 6. From the definition

û(ξ) =

∫ ∞

0

e−axeiξxdx

=

∫ ∞

0

e(iξ−a)xdx

=
1

iξ − a
e(iξ−a)x |∞0

=
1

a− iξ
.

Exercise 7. Observe that

xe−ax2

= − 1

2a

d

dx
e−ax2

.

Then

F(xe−ax2

) = − 1

2a
(−iξ)F(e−ax2

).

Exercise 9. Take transforms of the PDE to get

ût = (−iξ)2û+ f̂(ξ, t).

Solving this as a linear, first order ODE in t with ξ as a parameter, we get

û(ξ, t) =

∫ t

0

e−x2(t−τ)f̂(ξ, τ)dτ.

Taking the inverse Fourier transform, interchanging the order of integration,

and applying the convolution theorem gives

u(x, t) =

∫ t

0

F−1
[

e−x2(t−τ)f̂(ξ, τ)
]

dτ

=

∫ t

0

F−1
[

e−x2(t−τ)
]

⋆ f(x, τ)dτ

=

∫ t

0

∫ ∞

−∞

1
√

4π(t− τ)
e−(x−y)2/4(t−τ)f(y, τ)dydτ.

Exercise 10. Proceeding exactly in the same way as in the derivation of (2.65)

in the text, but with k replaced by I, we obtain the solution

u(x, t) =
1√
4πit

∫ ∞

−∞
e−(x−y)2/4itf(y)dy,
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where u(x, 0) = f(x). Thus

u(x, t) =
1√
4πit

∫ ∞

−∞
ei(x−y)2/4t−y2

dy.

Here, in the denominator,
√
i denotes the root with the positive real part, that

is
√
i = (1 + i)/

√
2.

Exercise 11. Letting v = uy we have

vxx + vyy = 0, x ∈ R, y > 0; v(x, 0) = g(x).

Hence

v(x, y) =
1

π

∫ ∞

−∞

yg(τ)

(x− τ)2 + y2
dτ.

Then

u(x, y) =

∫ y

0

v(x, ξ)dξ

=

∫ y

0

1

π

∫ ∞

−∞

yg(τ)

(x− τ)2 + y2
dτdξ

=
1

π

∫ ∞

−∞

∫ y

0

y

(x− τ)2 + y2
dξdτ

=
1

2π

∫ ∞

−∞
g(τ)

(

ln
(

(x − τ)2 + y2
)

− ln
(

(x− τ)2
))

dτ

=
1

2π

∫ ∞

−∞
g(x− ξ) ln

(

ξ2 + y2
)

dτ + C.

Exercise 12. We have

u(x, y) =
y

π

∫ l

−l

dτ

(x− τ)2 + y2

=
1

π

(

arctan

(

l− x

y

)

+ arctan

(

l + x

y

))

.

Exercise 13. From the definition of the Fourier transform

F(ux) =

∫ ∞

−∞
ux(x, t)e

iξxdx

= u(x, t)eiξx |∞−∞ −iξ
∫ ∞

−∞
u(ξ, t)eiξxdx

= −iξû(ξ, t).
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For the second derivative, integrate by parts twice and assume u and ux
tend to zero as x→ ±∞ to get rid of the boundary terms.

Exercise 14. In this case where f is a square wave signal,

F(f(x)) =

∫ ∞

−∞
f(x)eiξxdx =

∫ a

−a

eiξxdx =
2 sin ξx

ξ
.

Exercise 15. Taking the Fourier transform of the PDE

ut = Duxx − cux

gives

ût = −(Dξ2 + iξc)û,

which has general solution

û(ξ, t) = C(ξ)e−Dξ2t−iξct.

The initial condition forces C(ξ) = φ̂(ξ) which gives

û(ξ, t) = φ̂(ξ)e−Dξ2t−iξct.

Using

F−1
(

e−Dξ2t
)

=
1√
4πDt

e−x2/4Dt

and

F−1
(

û(ξ, t)e−iaξ
)

= u(x+ a),

we have

F−1
(

e−iξcte−Dξ2t
)

=
1√
4πDt

e−(x+vt)2/4Dt.

Then, by convolution,

u(x, t) = φ ⋆
1√
4πDt

e−(x+vt)2/4Dt.

Exercise 16. (a) Substituting u = exp(i(kx−ωt)) into the PDE ut+uxxx = 0

gives −iω + (ik)3 = 0 or ω = −k3. Thus we have solutions of the form

u(x, t) = ei(kx+k3t) = eik(x+k2t).

The real part of a complex-valued solution is a real solution, so we have solutions

of the form

u(x, t) = cos[k(x+ k2t)].
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These are left traveling waves moving with speed k2. So the temporal frequency

ω as well as the wave speed c = k2 depends on the spatial frequency, or wave

number, k. Note that the wave length is proportional to 1/k. Thus, higher

frequency waves are propagated faster.

(b) Taking the Fourier transform of the PDE gives

ût = −(−iξ)3û.

This has solution

û(ξ, t) = φ̂(ξ)e−iξ3t,

where φ̂ is the transform of the initial data. By the convolution theorem,

u(x, t) = φ(x) ⋆ F−1(e−iξ3t).

To invert this transform we go to the definition of the inverse. We have

F−1(e−iξ3t) =
1

2π

∫ ∞

−∞
e−iξ3te−iξxdξ

=
1

2π

∫ ∞

−∞
cos(ξ3t+ ξx)dξ

=
1

2π

∫ ∞

−∞
cos

(

z3

3
+

zx

(3t)1/3

)

1

(3t)1/3
dz

=
1

(3t)1/3
Ai

(

x

(3t)1/3

)

.

where we made the substitution ξ = z/(3t)1/3 to put the integrand in the form

of that in the Airy function. Consequently we have

u(x, t) =
1

(3t)1/3

∫ ∞

−∞
φ(x − y)Ai

(

y

(3t)1/3

)

dy.

Exercise 18. The problem is

utt = c2uxx = 0, x ∈ R, t > 0,

u(x, 0) = f(x), ut(x, 0) = 0, x ∈ R.

Taking Fourier transforms of the PDE yields

ûtt + c2ξ2û = 0

whose general solution is

û = A(ξ)eiξct +B(ξ)e−iξct.
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From the initial conditions, û(ξ, 0) = f̂(ξ) and ût(ξ, 0) = 0. Thus A(ξ) =

B(ξ) = 0.5f̂(ξ). Therefore

û(ξ, t) = 0.5f̂(ξ)(eiξct + e−iξct).

Now we use the fact that

F−1
(

f̂(ξ)eiaξ
)

= f(x− a)

to invert each term. Whence

u(x, t) = 0.5(f(x− ct) + f(x+ ct))

Exercise 19. The problem

ut = Duxx − vux, x ∈ R, t > 0; u(x, 0) = e−ax2

, x ∈ R

can be solved by Fourier transforms to get

u(x, t) =

√
a√

a+ 4Dt
e−(x−vt)2/((a+4Dt).

Thus, choosing a = v = 1 we get

U(t) = u(1, t) =
1√

1 + 4Dt
e−(1−t)2/((1+4Dt).

Exercise 20. Notice the left side is a convolution. Take the transform of both

sides, use the convolution theorem, and solve for f̂ . Then invert to get f .





3
Orthogonal Expansions

3.1 The Fourier Method

Exercise 1. Form the linear combination

u(x, t) =

∞
∑

n=1

an cosnct sinnx.

Then

u(x, 0) = f(x) =
∞
∑

n=1

an sinnx.

Using the exactly same calculation as in the text, we obtain

an =
2

π

∫ π

0

f(x) sinnx dx.

Observe that ut(x, 0) = 0 is automatically satisfied.

When the initial conditions are changed to u(x, 0) = 0, ut(x, 0) = g(x) then

a linear combination of the fundamental solutions un(x, t) = cosnct sinnx does

not suffice. But, observe that un(x, t) = sinnct sinnx now works and form the

linear combination

u(x, t) =
∞
∑

n=1

bn sinnct sinnx.

Now u(x, 0) = 0 is automatically satisfied and

ut(x, 0) = g(x) =

∞
∑

n=1

ncbn sinnx.
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Again using the argument in (3.5)–(3.7), one easily shows the bn are given by

bn =
2

ncπ

∫ π

0

g(x) sinnx dx.

3.2 Orthogonal Expansions

Exercise 2. The requirement for orthogonality is
∫ π

0

cosmx cosnx dx = 0, m 6= n.

For the next part make the substitution y = πx/l to get

∫ l

0

cos(mπx/l) cos(nπx/l); dx =

∫ π

0

cosmy cosny dy = 0, m 6= n.

We have

cn =
(f, cos(nπx/l))

|| cos(nπx/l)||2 .

Thus

c0 =
1

l

∫ l

0

f(x)dx, cn =
2

l

∫ l

0

f(x) cos(nπx/l)dx, n ≥ 1.

Exercise 8. Up to a constant factor, the Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
3

2
x2 − 1

2
, P3(x) =

5

2
x3 − 3

2
x.

The coefficients cn in the expansion are given by the generalized Fourier coef-

ficients

cn =
1

||Pn||2
(f, Pn) =

∫ 1

−1
exPn(x)dx

∫ 1

−1 Pn(x)
2dx

.

The pointwise error is

E(x) = ex −
3
∑

n=0

cnPn(x).

The mean square error is

E =

(

∫ 1

−1

[ex −
3
∑

n=0

cnPn(x)]
2dx

)1/2

.

The maximum pointwise error is max−1≤x≤1 |E(x)|.
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Exercise 9. Expanding

q(t) = (f + tg, f + tg)

= ||g||2t2 + 2(f, g)t+ ||f ||2.

which is a quadratic in t. Because q(t) is nonnegative (a scalar product of a

function with itself is necessarily nonnegative because it is the norm-squared),

the graph of the quadratic can never dip below the t axis. Thus it can have at

most one real root. Thus the discriminant b2−4ac must be nonpositive. In this

case the discriminant is

b2 − 4ac = 4(f, g)2 − 4||g||2||f ||2 ≤ 0.

This gives the desired inequality.

Exercise 12. Use the calculus facts that
∫ b

0

1

xp
dx <∞, p < 1

and
∫ ∞

a

1

xp
dx <∞, p > 1 (a > 0).

Otherwise the improper integrals diverge. Thus xr ∈ L2[0, 1] if r > −1/2 and

xr ∈ L2[0,∞] if r < −1/2 and r > −1/2, which is impossible.

Exercise 13. We have

cosx =

∞
∑

n=1

bn sin 2nx, bn =
4

π

∫ π/2

0

cosx sin 2nx dx.

Also,

sinx =

∞
∑

n=1

bn sinnx

clearly forces b1 = 1 and bn = 0 for n ≥ 1. Therefore the Fourier series of sinx

on [0, π] is just a single term, sinx.

3.3 Classical Fourier Series

Exercise 1. Since f is an even function, bn = 0 for all n. We have

a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π/2

−π/2

dx = 1,
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and for n = 1, 2, 3, . . . ,

an =
1

π

∫ π/2

−π/2

sinnx dx =
2

nπ
sin(nπ/2)

Thus the Fourier series is

1

2
+

2

π

∞
∑

n=1

1

n
sin(nπ/2) cosnx

=
1

2
+

2

π

(

cosx− 1

3
cos 3x+ · · ·

)

.

A plot of a two-term and a four-term approximation is shown in the figure.

Exercise 3. Because the function is even, bn = 0. Then

a0 =
1

π

∫ π

−π

x2dx = 2π2/3

and

an =
1

π

∫ π

−π

x2 cosnx dx =
4(−1)n

n2
.

So the Fourier series is

π2

3
+

∞
∑

n=0

4(−1)n

n2
cosnx.

This series expansion of f(x) = x2 must converge to f(0) = 0 at x = 0 since f

is piecewise smooth and continuous there. This gives

0 =
π2

3
+

∞
∑

n=0

4(−1)n

n2
,

which implies the result.

The frequency spectrum is

γ0 =
2π2

3
√
2
, γn =

4

n2
, n ≥ 1.

Exercise 7. This problem suits itself for a computer algebra program to cal-

culate the integrals. We find a0 = 1 and an = 0 for n ≥ 1. Then we find

bn =
1

2π

∫ 0

−2π

(x+ 1) sin(nx/2)dx+
1

2π

∫ 2π

0

x sin(nx/2)dx

=
1

π

−1 + (−1)n + 4π(−1)n+1

n
.
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Note that bn = −4/nπ if n is even and bn = (−2 + 4π)/nπ if n is odd. So the

Fourier series is

f(x) =
1

2
+

1

π

∞
∑

n=1

−1 + (−1)n + 4π(−1)n+1

n
sin(nx/2).

A five-term approximation is shown in the figure.

Exercise 10. Because cos ax is even we have bn = 0 for all n. Next

a0 =
1

π

∫ π

−π

cos ax dx =
2 sinaπ

aπ

and, using a table of integrals or a software program, for n ≥ 1,

an =
1

π

∫ π

−π

cos ax cosnx dx

=
1

π

(

sin(a− n)x

2(a− n)
+

sin(a+ n)x

2(a+ n)

)π

−π

=
2a(−1)n

π(a2 − n2)
sin aπ.

Therefore the Fourier series is

cos ax =
sin aπ

aπ
+

∞
∑

n=1

2a(−1)n

π(a2 − n2)
sin aπ cosnx.

Substitute x = 0 to get the series for cscaπ.

Exercise 11. Here f(x) is odd so an = 0 for all n. Then

bn =
1

π

∫ 0

−π

−1

2
sinnx dx+

1

π

∫ π

0

1

2
sinnx dx

=
1

nπ
(1− (−1)n).

Therefore

b=
2

(2k − 1)π
, k = 1, 2, 3, . . . .

The Fourier series is

∑

k=1

∞ 2

(2k − 1)π
sin(2k − 1)x.

Plots of partial sums show overshoot near the discontinuity (Gibbs phe-

nomenon).





4
Partial Differential Equations on Bounded

Domains

4.1 Overview of Separation of Variables

Exercise 2. The solution is

u(x, t) =

∞
∑

n=1

ane
−n2t sinnx,

where

an =
2

π

∫ π

π/2

sinnxdx = − 2

nπ
((−1)n − cos(nπ/2)).

Thus

u(x, t) =
2

π
e−t sinx− 2

π
e−4t sin 2x+

2

3π
e−9t sin 3x+

2

5π
e−25t sin 5x+ · · · .

Exercise 3. The solution is given by formula (4.14) in the text, where the

coefficients are given by (4.15) and (4.16). Since G(x) = 0 we have cn = 0.

Then

dn =
2

π

∫ π/2

0

x sinnx dx +
2

π

∫ π

π/2

(π − x) sinnx dx.

Using the antiderivative formula
∫

x sinnx dx = (1/n2) sinnx − (x/n) cosnx

we integrate to get

dn =
4

πn2
sin

nπ

2
.
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Exercise 4. Substituting u = y(x)g(t) into the PDE and boundary conditions

gives the SLP
−y′′ = λy, y(0) = y(1) = 0

and, for g, the equation
g′′ + kg′ + c2λg = 0.

The SLP has eigenvalues and eigenfunctions

λn = n2π2, yn(x) = sinnπx, n = 1, 2, . . . .

The g equation is a linear equation with constant coefficients; the characteristic

equations is
m2 + km+ c2λ = 0,

which has roots

m =
1

2
(−k ±

√

k2 − 4c2n2π2).

By assumption k < 2πc, and therefore the roots are complex for all n. Thus the

solution to the equation is (see the Appendix in the text on ordinary differential

equations)
gn(t) = e−kt(an cos(mnt) + bn sin(mnt)),

where

mn =
1

2

√

4c2n2π2 − k2).

Then we form the linear combination

u(x, t) =

∞
∑

n=1

e−kt(an cos(mnt) + bn sin(mnt)) sin(nπx).

Now apply the initial conditions. We have

u(x, 0) = f(x) =

∞
∑

n=1

an sin(nπx),

and thus

an =

∫ 1

0

f(x) sinnπx dx.

The initial condition ut = 0 at t = 0 yields

ut(x, 0) = 0 =

∞
∑

n=1

(bnmn − kan) sin(nπx).

Therefore
bnmn − kan = 0,

or

bn =
kan
mn

=
k

mn

∫ 1

0

f(x) sinnπx dx.
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4.2 Sturm–Liouville Problems

Exercise 1. Substituting u(x, t) = g(t)y(x) into the PDE

ut = (p(x)ux)x − q(x)u

gives

g′(t)y(x) =
d

dx
(p(x)g(t)y′(x))− q(x)g(t)y(x).

Dividing by g(t)y(x) gives
g′

g
=

(py′)′ − q

y
.

Setting these equal to −λ gives the two differential equations for g and y.

Exercise 2. When λ = 0 the ODE is −y′′ = 0 which gives y(x) = ax + b.

But y′(0) = a = 0 and y(l) = al + b = 0, and so a = b = 0 and so zero is

not an eigenvalue. When λ = −k2 < 0 then the ODE has general solution

y(x) = aekx + be−kx, which are exponentials. If y = 0 at x = 0 and x = l, then

it is not difficult to show a = b = 0, which means that there are no negative

eigenvalues. If λ = k2 > 0 then y(x) = a sinkx+ b coskx. Then y′(0) = 0 forces

a = 0 and then y(l) = b cos kl = 0. But the cosine function vanishes at π/2

plus a multiple of π, i.e.,

kl =
√
λl = π/2 + nπ

for n = 0, 1, 2, . . .. This gives the desired eigenvalues and eigenfunctions as

stated in the problem.

Exercise 3. The problem is

−y′′ = λy, y(0) + y′(0) = 0, y(1) = 0.

If λ = 0 then y(x) = ax + b and the boundary conditions force b = −a. Thus
eigenfunctions are

y(x) = a(1− x).

If λ < 0 then y(x) = a coshkx + b sinh kx where λ = −k2. The boundary

conditions give

a+ bk = 0, a coshk + b sinhk = 0.

Thus sinh k − k coshk = 0 or k = tanhk which has no nonzero roots. Thus

there are no negative eigenvalues.

If λ = k2 > 0 then y(x) = a cos kx + b sinkx. The boundary conditions

imply

a+ bk = 0, a cos k + b sink = 0.
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Thus k = tan k which has infinity many positive roots kn (note that the graphs

of k and tan k cross infinitely many times). So there are infinitely many positive

eigenvalues given by λn = k2n.

Exercise 4. The SLP is

−y′′ = λy, y(0) + 2y′(0) = 0, 3y(2) + 2y′(2) = 0.

If λ = 0 then y(x) = ax + b. The boundary conditions give b + 2a = 0 and

8a + 3b = 0 which imply a = b = 0. So zero is not an eigenvalue. Since this

problem is a regular SLP we know by the fundamental theorem that there are

infinitely many positive eigenvalues.

If λ = −k2 < 0, then y(x) = a coshkx+ b sinhkx. The boundary conditions

force the two equations

a+ 2bk = 0, (3 cosh 2k + 2k sinh 2k)a+ (3 sinh 2k + 2k cosh 2k) = 0.

This is a homogeneous linear system for a and b and it will have a nonzero

solution when the determinant of the coefficient matrix is zero, i.e.,

tan 2k =
4k

3− 4k2
.

This equation has nonzero solutions at k ≈ ±0.42. Therefore there is one

negative eigenvalue λ ≈ −0.422 = −0.176. (This nonlinear equation for k can

be solved graphically using a calculator, or using a computer algebra package,

or using the solver routine on a calculator).

Exercise 5. When λ = 0 the ODE is y′′ = 0, giving y(x) = Ax + B. Now

apply the boundary conditions to get

B − aA = 0, Al +B + bA = 0.

This homogeneous system has a nonzero solution for A and B if and only if

a + b = −abl. (Note that the determinant of the coefficient matrix must be

zero).

Exercise 7. Multiply the equation by y and integrate from x = 0 to x = l to

get

−
∫ l

0

yy′′dx+

∫ l

0

qy2dx = λ

∫ l

0

y2dx.

Integrate the first integral by parts; the boundary term will be zero from the

boundary conditions; then solve for λ to get

λ =

∫ l

0(y
′)2dx+

∫ l

0 qy
2dx

||y||2 .
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Clearly (note y(x) 6= 0) the second integral in the numerator and the integral in

the denominator are positive ,and thus λ > 0. y(x) cannot be constant because

the boundary conditions would force that constant to be zero.

Exercise 9. When λ = 0 the ODE is −y′′ = 0 which gives y(x) = ax + b.

The boundary conditions force a = 0 but do not determine b. Thus λ = 0 is

an eigenvalue with corresponding constant eigenfunctions. When λ = −k2 < 0

then the ODE has general solution y(x) = aekx+be−kx, which are exponentials.

Easily, exponential functions cannot satisfy periodic boundary conditions, so

there are no negative eigenvalues. If λ = k2 > 0 then y(x) = a sin kx+ b cos kx.

Then y′(x) = ak cos kx− bk sin kx. Applying the boundary conditions

b = a sin kl+ b cos kl, a = a coskl − b sinkl.

We can rewrite this system as a homogeneous system

a sin kl+ b(cos kl − 1) = 0

a(cos kl − 1)− b sin kl = 0.

A homogeneous system will have a nontrivial solution when the determinant

of the coefficient matrix is zero, which is in this case reduces to the equation

cos kl = 0.

Therefore kl must be a multiple of 2π, or

λn = (2nπ/l)2, n = 1, 2, 3, . . . .

The corresponding eigenfunctions are

yn(x) = an sin(2nπx/l) + bn cos(2nπx/l).

Exercise 10. Letting c(x, t) = y(x)g(t) leads to the periodic boundary value

problem

−y′′ = λy, y(0) = y(2l), y′(0) = y′(2l)

and the differential equation

g′ = λDg,

which has solution

g(t) = e−Dλt.

The eigenvalues and eigenfunctions are found exactly as in the solution of

Exercise 4, Section 3.4, with l replaced by 2l. They are

λ0 = 0, λn = n2π2/l2, n = 1, 2, . . .
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and

y0(x) = 1, yn(x) = an cos(nπx/l) + bn sin(nπx/l), n = 1, 2, . . . .

Thus we form

c(x, t) = a0/2 +

∞
∑

n=1

e−n2π2Dt/l2(an cos(nπx/l) + bn sin(nπx/l).

Now the initial condition gives

c(x, 0) = f(x) = a0/2 +
∞
∑

n=1

(an cos(nπx/l) + bn sin(nπx/l),

which is the Fourier series for f . Thus the coefficients are given by

an =
1

l

∫ 2

0

lf(x) cos(nπx/l)dx, n = 0, 1, 2, . . .

and

bn =
1

l

∫ 2

0

lf(x) sin(nπx/l)dx, n = 1, 2, . . . .

Exercise 11. The operator on the left side of the equation has variable coeffi-

cients and the ODE cannot be solved analytically in terms of simple functions.

Exercise 12. This problem models the transverse vibrations of a string of

length l when the left end is fixed (attached) and the right end experience no

force; however, the right end can move vertically. Initially the string is displaced

by f(x) and it is not given an initial velocity.

Substituting u = y(x)g(t) into the PDE and boundary conditions gives the

SLP

−y′′ = λy, y(0) = y′(l) = 0

and, for g, the equation

g′′ + c2λg = 0.

The SLP has eigenvalues and eigenfunctions

λn = ((2n+ 1)π/l)2, yn(x) = sin((2n+ 1)πx/l), n = 0, 1, 2, . . . ,

and the equation for g has general solution

gn(t) = an sin((2n+ 1)πct/l) + bn cos((2n+ 1)πct/l).

Then we form

u(x, t) =

∞
∑

n=0

(an sin((2n+ 1)πct/l) + bn cos((2n+ 1)πct/l)) sin((2n+ 1)πx/l).
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Applying the initial conditions,

u(x, t) = f(x) =

∞
∑

n=0

bn sin((2n+ 1)πx/l),

which yields

bn =
1

|| sin((2n+ 1)πx/l)||2
∫ l

0

f(x) sin((2n+ 1)πx/l).

And

ut(x, 0) = 0 =

∞
∑

n=0

ancλn sin((2n+ 1)πx/l),

which gives an = 0. Therefore the solution is

u(x, t) =

∞
∑

n=0

bn cos((2n+ 1)πct/l)) sin((2n+ 1)πx/l).

Exercise 13. The flux at x = 0 is φ(0, t) ≡ −ux(0, t) = −a0u(0, t) > 0, so

there is heat flow into the bar and therefore adsorption. At x = 1 we have

φ(1, t) = −ux(1, t) = a1u(1, t) > 0, and therefore heat is flowing out of the bar,

which is radiation. The right side of the inequality a0+ a1 > −a0a1 is positive,

so the positive constant a1, which measures radiation, must greatly exceed the

negative constant a0, which measures adsorption.

In this problem substituting u = y(x)g(t) leads to the Sturm-Liouville prob-

lem

−y′′ = λy, y′(0)− a0y(0) = 0, y′(1) + a1y(1) = 0

and the differential equation

g′ = λg.

There are no nonpositive eigenvalues. If we take λ = k2 > 0 then the solutions

are

y(x) = a cos kx+ b sinkx.

Applying the two boundary conditions leads to the nonlinear equation

tan k =
(a0 + a1)k

k2 − a0a1
.

To determine the roots k, and thus the eigenvalues λ = k2, we can graph both

sides of this equation to observe that there are infinitely many intersections

occurring at kn, and thus there are infinitely many eigenvalues λn = k2n. The

eigenfunctions are

yn(x) = cos knx+
a0
kn

sin knx.
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So the solution has the form

u(x, t) =

∞
∑

n=1

cne
−λ2

n
t(cos knx+

a0
kn

sin knx).

The cn are then the Fourier coefficients

cn = (f, yn)/||yn||2.

If a0 = −1/4 and a1 = 4 then

tan k =
3.75k

k2 + 1
.

From a graphing calculator, the first four roots are approximately k1 =

1.08, k2 = 3.85, k3 = 6.81, k4 = 9.82.

4.3 Generalization and Singular Problems

Exercise 1. (a) Yes (divide by x2). (b) No.

Exercise 2. Multiply by y and then integrate. Then integrate the first term

by parts and apply the boundary conditions.

Exercise 3. Rewrite the equation as

x2y′′ + xy′ + λy = 0,

which is a Cauchy-Euler equation. The roots of the characteristic equation are

m = ±
√
λ, where λ = k2 > 0. So the general solution is y(x) = A cos(k lnx) +

B sin(k lnx). (Note that a simple energy argument shows the eigenvalues are

positive.) Now, y(1) = 0 forces A = 0, and y(b) = B sin(k ln b) = 0. Therefore,

k ln b = nπ, n = 1, 2, 3 . . .. Thus the eigenvalues are λn = nπ/ ln b and the

eigenfunctions are yn(x) = sinnπ, n = 1, 2, 3, . . ..

Exercise 4. Multiplying the differential equation by y and integrating from

x = 1 to x = π gives

−
∫ π

1

y(x2y′)′dx = λ

∫ π

1

y2dx

or, upon integrating the left side by parts,

−xyy′ |π1 −
∫ π

1

x2(y′)2dx = λ

∫ π

1

y2dx.
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The boundary term vanishes because of the boundary conditions. Therefore,

because both integrals are nonnegative we have λ ≥ 0. If λ = 0 then y′ =const=

0 (by the boundary conditions). So λ 6= 0 and the eigenvalues are therefore

positive.

If λ = k2 > 0, then the ODE becomes

x2y′′ + 2xy′ + k2y = 0,

which is a Cauchy-Euler equation (see the Appendix on differential equations

in the text). This can be solved to determine eigenvalues

λn =
( nπ

lnπ

)2

+
1

4

with corresponding eigenfunctions

yn(x) =
1√
x
sin
( nπ

lnπ
lnx
)

.

Exercise 7. Letting u = g(t)y(x) and substituting into the equation and

boundary conditions gives g′′ = λg and the Sturm–Liouville problem

−y′′ = −λ 1

c(x)2
y, y(0) = y(l) = 0.

The weight function is 1/c(x)2.

Exercise 8. We have ρ(x)utt = uxx. Putting u = Y (x)g(t) gives, upon sepa-

rating variables,
−y′′ = ρ(x)λy, y(0) = y(1) = 0.

We have
−y′′f = ρ(x)λf yf , yf(0) = yf (1) = 0.

Integrating from x = 0 to x = s gives

−y′f(s) + y′f (0) = λf

∫ s

0

ρ(x)yf (x)dx.

Now integrate from s = 0 to s = 1 to get

y′f (0) = λf

∫ 1

0

∫ s

0

ρ(x)yf (x)dxds

= λf

∫ 1

0

(1− x)ρ(x)yf (x)dx.

The last step follows by interchanging the order of integration. If ρ(x) =r ho0
is a constant, then

ρ0 =
y′f(0)

λf
∫ 1

0 (1− x)yf (x)dx
.
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Exercise 9. From Exercise 2 in Section 4.6 we have the solution

u(x, t) =
2

π

∞
∑

n=1

1

kn2
(1− e−n2kt)

(
∫ π

0

f(r) sinnr dr

)

sinnx.

Therefore

U(t) = u(π/2, t) =

∫ π

0

(

2

π

∞
∑

n=1

sinnr sin(nπ/2)
1

kn2
(1− e−n2kt)

)

f(r)dr.

We want to recover f(x) if we know U(t). This problem is not stable, as the

following example shows. Let

u(x, t) = m−3/2(1− e−m2t) sinmx, f(x) =
√
m sinmx.

This pair satisfies the model. If m is sufficiently large, thenu(x, t) is uniformly

small; yet f(0) is large. So a small error in measuring U(t) will result in a large

change in f(x).

4.4 Laplace’s Equation

Exercise 1. Substituting u(x, y) = φ(x)ψ(y) we obtain the Sturm-Liouville

problem

−φ′′ = λφ, x ∈ (0, l); φ(0) = φ(l) = 0

and the differential equation

ψ′′ − λψ = 0.

The SLP has eigenvalues and eigenfunctions

λn = n2π2/l2, φn(x) = sin(nπx/l),

and the solution to the ψ–equation is

ψn(y) = an cosh(nπy/l) + bn sinh(nπy/l).

Therefore

u(x, y) =

∞
∑

n=1

(an cosh(nπy/l) + bn sinh(nπy/l)) sin(nπx/l).

Now we apply the boundary conditions:

u(x, 0) =

∞
∑

n=1

an sin(nπx/l) = 0,
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so an = 0. Therefore

u(x, 1) = G(x) =

∞
∑

n=1

bn sinh(nπ/l)) sin(nπx/l).

Thus

bn sinh(nπ/l) =
2

l

∫ π

0

G(x) sin(nπx/l)dx,

which determines the coefficients bn.

Exercise 2. This problem models the steady state temperatures in a rectangu-

lar plate that is insulated on both sides, whose temperature is zero on the top,

and whose temperature is f(x) along the bottom. Letting u = g(y)φ(x) and

substituting into the PDE and boundary conditions gives the Sturm-Liouville

problem

−φ′′ = λφ, φ′(0) = φ′(a) = 0

and the differential equation

g′′ − λg = 0.

The eigenvalues and eigenfunctions are λ0 = 0, φ(x) = 1 and

λn = n2π2/a2, φn(x) = cos(nπx/a), n = 1, 2, 3, . . . .

The solution to the g equation is, corresponding to the zero eigenvalue, g0(y) =

c0y + d0, and corresponding to the positive eigenvalues,

gn(y) = cn sinh(nπy/a) + dn cosh(nπy/a).

Thus we form the linear combination

u(x, y) = c0y + d0 +

∞
∑

n=1

(cn sinh(nπy/a) + dn cosh(nπy/a)) cos(nπx/a).

Now apply the boundary conditions on y to compute the coefficients:

u(x, 0) = f(x) = d0 +

∞
∑

n=1

dn cos(nπx/a),

which gives

d0 =
1

a

∫ a

0

f(x)dx, dn =
2

a

∫ a

0

f(x) cos(nπx/a)dx.

Next

u(x, b) = 0 = c0b+ d0 +

∞
∑

n=1

(cn sinh(nπb/a) + dn cosh(nπb/a)) cos(nπx/a).
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Therefore

c0 = −d0/b, cn = −cosh(nπb/a)

sinh(nπb/a)
dn.

Exercise 3. The general solution is given in the text. Here

f(θ) = 4 + 3 sin θ.

The right side is its Fourier series, so the Fourier coefficients are given by

a0
2

= 4, Rb1 = 3,

with all the other Fourier coefficients identically zero. So the solution is

u(r, θ) = 4 +
3r

R
sin θ.

Exercise 5. The exterior Poisson formula applies but the integral is difficult.

In this simple case assume a separable solution of the form u(r, θ) = Ar−n cos θ.

Substitute into the radial form of the equation to get n = 1 (to get bounded

solutions). Apply the boundary condition to get A = 1. Therefore

u(r, θ) =
1

r
cos θ.

Exercise 6. Substituting u(r, θ) = g(θ)y(r) into the PDE and boundary con-

ditions gives the Sturm-Liouville problem

−g′′ = λg, g(0) = g(π/2) = 0

and the differential equation

r2y′′ + ry′ + λy = 0.

This SLP has been solved many times in the text and in the problems. The

eigenvalues and eigenfunctions are

λn = 4n2, gn(θ) = sin(2nθ), n = 1, 2, . . . .

The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) = r2n.

Form

u(r, θ) =

∞
∑

n=1

bnr
2n sin(2nθ).
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Then the boundary condition at r = R gives

u(R, θ) = f(θ) =

∞
∑

n=1

bnR
2n sin(2nθ).

Hence the coefficients are

bn =
1

πR2n

∫ π/2

0

f(θ) sin(2nθ)dθ.

Exercise 7. Substituting u(r, θ) = g(θ)y(r) into the PDE and boundary con-

ditions gives the Sturm-Liouville problem

−g′′ = λg, g(0) = g′(π/2) = 0

and the differential equation

r2y′′ + ry′ + λy = 0.

The eigenvalues and eigenfunctions are

λn = (2n+ 1)2, gn(θ) = sin((2n+ 1)θ), n = 0, 1, 2, . . . .

The y equation is a Cauchy-Euler equation and has bounded solution

yn(r) = r2n+1

Form

u(r, θ) =

∞
∑

n=1

bnr
2n+1 sin((2n+ 1)θ).

Then the boundary condition at r = R gives

u(R, θ) = f(θ) =

∞
∑

n=1

bnR
2n+1 sin((2n+ 1)θ).

Hence the coefficients are

bn =
1

πR2n+1

∫ π/2

0

f(θ) sin((2n+ 1)θ)dθ.
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Exercise 10. Let w = u + v where u satisfies the Neumann problem and v

satisfies the boundary condition n · ∇v = 0. Then

E(w) = E(u + v)

=
1

2

∫

Ω

(∇u · ∇u+ 2∇u · ∇v +∇v · ∇v)dV −
∫

∂Ω

(hu− hv)dA

= E(u) +

∫

Ω

∇u · ∇v dV +
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +

∫

∂Ω

v∇u · n dA−
∫

Ω

v∆u dV +
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +

∫

∂Ω

vh dA+
1

2

∫

Ω

∇v · ∇vdV −
∫

∂Ω

hv dA

= E(u) +
1

2

∫

Ω

∇v · ∇vdV

So E(u) ≤ E(w).

Exercise 11. Integrate the partial differential equation over a region Ω and

then use the divergence theorem to get
∫

Ω

fdV =

∫

Ω

∆udV =

∫

∂Ω

gradu · ndA =

∫

∂Ω

hdA.

In a steady heat flow context, for example, this states that net rate that heat is

produced by sources in the region must equal the rate that heat leaves through

the boundary.

Exercise 12. Take u = ρ−1w. (NOTE: there is a typographical error in the

exercise.) Then find uρ and uρρ and substitute into the PDE to reduce the

equation to wρρ − k2w = 0. This has general solution w = c1e
kρ + c2e

−kρ.

Exercise 13. Multiply both sides of the PDE by u and integrate over Ω. We

obtain
∫

Ω

u∆u dV = c

∫

Ω

u2dV.

Now use Green’s first identity to obtain
∫

∂Ω

u∇u · ndA−
∫

Ω

∇u · ∇u dV = c

∫

Ω

u2dV,

or

−
∫

∂Ω

au2dA−
∫

Ω

∇u · ∇u dV = c

∫

Ω

u2dV.

The left side is negative and the right side is positive. Then both must be zero,

or
∫

Ω

u2dV = 0.
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Hence u = 0 in Ω.

The uniqueness argument is standard. Let u and v be two solutions to the

boundary value problem

∆u− cu = f, x ∈ Ω n · ∇u + au = g, x ∈ ∂Ω.

Then the difference w = u− v satisfies the homogeneous problem

∆w − cw = 0, x ∈ Ω n · ∇w + aw = 0, x ∈ ∂Ω.

By the first part of the problem we know w = 0 and therefore u = v.

Exercise 14. Let w and v be two solutions and take u = w−v. Then ∆u−cu =

0 on Ω and n · gradu + au = 0 on ∂Ω. Now use Exercise 13 to get u = 0, so

that w = v.

Exercise 15. Multiplying the equation ∆u = 0 by u, integrating over Ω, and

then using Green’s identity gives
∫

Ω

u∆u dV =

∫

∂Ω

u∇u · ndA−
∫

Ω

∇u · ∇udV = 0.

Thus ∫

Ω

∇u · ∇udV = 0,

which implies
∇u = 0.

Thus u = constant.

Exercise 16. Let v and w be two solutions and take u = v − w. To show

u = 0 we use an energy argument. Multiply the PDE by u and integrate to get
∫

Ω
u∆u dV = 0. By Green’s first identity,

∫

∂Ω

u∇u · ndA−
∫

Ω

∇u · ∇udV = 0.

Using the boundary condition, we get

−
∫

∂Ω

au2dA−
∫

Ω

∇u · ∇udV = 0.

Both terms on the left are negative, which is a contradiction. So u = 0 on Ω.

Exercise 18. Typographical error : the boundary condition should be du/dn =

sin2 θ. We have ∫

Ω

fdV = 0 and

∫

∂Ω

sin2 θdA > 0,

which contradicts the result of Exercise 11.

Exercise 19. The radial equation in spherical coordinates is ρ−2(ρ2uρ)ρ = 0

has solution u(ρ) = c1ρ
−1 + c2. Apply the boundary conditions to determine

c1 and c2.
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4.5 Cooling of a Sphere

Exercise 1. The problem is

−y′′ − 2

ρ
y′ = λy, y(0) bounded, y(π) = 0.

Making the transformation Y = ρy we get −Y ′′ = λY . If λ = −k2 < 0 then

Y = a sinh kρ+ b coshkρ,

or

y = ρ−1(a sinh kρ+ b coshkρ).

For boundedness at ρ = 0 we set b = 0. Then y(π) = 0) forces sinh kπ = 0.

Thus k = 0. Consequently, there are no negative eigenvalues.

Exercise 2. From the formula developed in the text the temperature at ρ = 0

is

u(0, t) = 74

∞
∑

n=1

(−1)n+1 1

n
e−n2kt,

where k = 5.58 inches-squared per hour.

Exercise 3. The boundary value problem is

ut = k(uρρ +
2

ρ
uρ),

uρ(R, t) = −hu(R, t), t > 0,

u(ρ, 0) = f(ρ), 0 ≤ ρ ≤ R.

Assume u = y(ρ)g(t). Then the PDE and boundary conditions separate into

the boundary value problem

y′′ + (2/ρ)y′ + λy = 0, y′(R) = −hy(R), y bounded

and the differential equation

g− = −λkg.

The latter has solution g(t) = exp(−λkt). One can show that the eigenvalues

are positive. So let λ = p2 and make the substitution Y = ρy, as in the text,

to obtain

Y ′′ + p2Y = 0.

This has solution

Y (ρ) = a cos pρ+ b sin pρ.
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But Y (0) = 0 forces a = 0 (because y is bounded). Then the other boundary

condition forces p to satisfy the nonlinear equation

tanRp =
Rp

1−Rh
.

If we graph both sides of this equation against p we note that there are infinitely

many intersections, giving infinitely many roots pn, n = 1, 2, . . ., and therefore

infinitely many eigenvalues λn = p2n. The corresponding eigenfunctions are

yn(ρ) = ρ−1 sin(
√

λnρ).

Thus we have

u(ρ, t) =

∞
∑

n=1

cne
−λnktρ−1 sin(

√

λnρ).

The cn are found from the initial condition. We have

u(ρ, 0) = f(ρ) =

∞
∑

n=1

cnρ
−1 sin(

√

λnρ).

Thus

cn =

∫ R

0 ρf(ρ) sin(
√
λnρ)dρ

∫ R

0
sin2(

√
λnρ)ρdρ

.

Exercise 4. Representing the Laplacian in spherical coordinates, the boundary

value problem for u = u(ρ, φ), where ρ ∈ (0, 1) and φ ∈ (0, π), is

∆u = uρρ +
2

ρ
uρ +

1

ρ2 sinφ
(sin φuφ) = 0,

u(1, φ) = f(φ), 0 ≤ φ ≤ π.

Observe, by symmetry of the boundary condition, u cannot depend on the

angle θ. Now assume u = R(ρ)Y (φ). The PDE separates into two equations,

ρ2R′′ + 2ρR′ − λR = 0

and
1

sinφ
(sinφY ′)′ = λY.

We transform the Y equation by changing the independent variable to x =

cosφ. Then we get, using the chain rule,

1

sinφ

d

dφ
= − d

dx
.



58 4. Partial Differential Equations on Bounded Domains

So the Y –equation becomes

− d

dx

(

(1− x2)
dy

dx

)

= λy − 1 < x < 1.

By the given facts, this equation has bounded, orthogonal, solutions yn(x) =

Pn(x) on [−1, 1] when λ = λn = n(n + 1), n = 0, 1, 2, . . .. Here Pn(x) are the

Legendre polynomials.

Now, the R–equation then becomes

ρ2R′′ + 2ρR′ − n(n+ 1)R = 0

This is a Cauchy-Euler equation (see the Appendix in the text) with charac-

teristic equation

m(m− 1) +m− n(n+ 1) = 0.

The roots are m = n,−(n+ 1). Thus

Rn(ρ) = anρ
n

are the bounded solutions (the other root gives the solution ρ−n−1, which is

unbounded at zero). Therefore we form

u(ρ, φ) =

∞
∑

n=0

anρ
nPn(cosφ)

or, equivalently,

u(ρ, x) =

∞
∑

n=0

anρ
nPn(x).

Applying the boundary condition gives the coefficients. We have

u(1, x) = f(arccosx) =

∞
∑

n=0

anPn(x).

By orthogonality we get

an =
1

||Pn||2
∫ 1

−1

f(arccosx)Pn(x)dx,

or

an =
1

||Pn||2
∫ π

0

f(φ)Pn(cosφ) sin φ dφ.

By direct differentiation we get

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1), P3(x) =

5

2
x3 − 3

2
x.
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Also the norms are given by

||P0||2 = 2, ||P1||2 =
2

3
, ||P2||2 =

2

5
.

When f(φ) = sinφ the first few Fourier coefficients are given by

a0 =
π

4
, a1 = a3 = 0, a2 = −0.49.

Therefore a two-term approximation is given by

u(ρ, φ) ≈ π

4
− 0.49

2
ρ2(3 cos2 φ− 1).

Exercise 5. To determine the temperature of the earth we must derive the

temperature formula for any radius R (the calculation in the text uses R = π).

The method is exactly the same, but now the eigenvalues are λn = n2π2/R2

and the eigenfunctions are yn = ρ−1 sin(nπρ/R), for n = 1, 2, . . .. Then the

temperature is

u(ρ, t) =
2RT0
π

∞
∑

n=1

(−1)n+1

n
e−lamnktρ−1 sin(nπρ/R).

Now we compute the geothermal gradient at the surface, which is uρ(ρ, t) at

ρ = R. We obtain

uρ(R, t) = −2T0
R

∞
∑

n=1

e−n2π2kt/R2

.

If G is the value of the geothermal gradient at the current time t = tc, then

RG

2T0
=

∞
∑

n=1

e−n2π2ktc/R
2

.

We must solve for tc. Notice that the sum has the form

∞
∑

n=1

e−an2

where a = π2ktc/R
2. We can make an approximation by noting that the sum

represents a Riemann sum approximation to the integral
∫ ∞

0

e−ax2

dx =
1

2

√

π/a.

So we use this value to approximate the sum, i.e.,

∞
∑

n=1

e−n2π2ktc/R
2 ≈ R

2
√
kπtc

.
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Solving for tc gives

tc =
T 2
0

G2kπ
.

Substituting the numbers in from Exercise 5 in Section 2.4 gives tc = 5.15(10)8

years. This is the same approximation we found earlier.

4.6 Diffusion in a Disk

Exercise 1. The differential equation is −(ry′)′ = λry. Multiply both sides by

y and integrate over [0, R] to get

∫ R

0

−(ry′)′ydr = λ

∫ R

0

ry2dr.

Integrating the left hand side by parts gives

−ryy′ |R0
∫ R

0

r(y′)2dr = λ

∫ R

0

ry2dr.

But, since y and y′ are assumed to be bounded, the boundary term vanishes.

The remaining integrals are nonnegative and so λ ≥ 0.

Exercise 2. Let y, λ and w, µ be two eigenpairs. Then −(ry′)′ = λry and

−(rw′)′ = µrw. Multiply the first of these equations by w and the second by

y, and then subtract and integrate to get

∫ R

0

[−(ry′)′w + (rw′)′y]dr = (λ− µ)

∫ R

0

ruwdr.

Now integrate both terms in the first integral on the left hand side by parts to

get

(−ry′w + rw′y) |R0 +

∫ R

0

(ry′w′ − rw′y′)dr = (λ− µ)

∫ R

0

ruwdr.

The left side of the equation is zero and so y and w are orthogonal with respect

to the weight function r.

Exercise 3. We have

u(r, t) =
∞
∑

n=1

cne
−0.25λntJ0(znr),
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where

cn =

∫ 1

0 5r4(1− r)J0(znr)dr
∫ 1

0
J0(znr)2rdr

.

We have z1 = 2.405, z2 = 5.520, z3 = 8.654. Use a computer algebra program

to calculate a 3-term approximation.

4.7 Sources on Bounded Domains

Exercise 1. Use Duhamel’s principle to solve the problem

utt − c2uxx = f(x, t), 0 < x < π, t > 0,

u(0, t) = u(π, t) = 0, t > 0,

u(x, 0) = ut(x, 0) = 0, 0 < x < π.

Consider the problem for w = w(x, t, τ), where τ is a parameter:

wtt − c2wxx = 0, 0 < x < π, t > 0,

w(0, t, τ) = w(π, t, τ) = 0, t > 0,

w(x, 0, τ) = 0, wt(x, 0, τ) = 0, 0 < x < π.

This problem was solved in Section 4.1 (see (4.14)–(4.14)). The solution is

w(x, t, τ) =

∞
∑

n=1

cn(τ) sinnct sinnx,

where

cn(τ) =
2

ncπ

∫ π

0

f(x, τ) sinnx dx.

So the solution to the original problem is

u(x, t) =

∫ t

0

w(x, t− τ, τ)dτ.

Exercise 3. If f = f(x), and does not depend on t, then the solution can be

written

u(x, t) =
2

π

∞
∑

n=1

(
∫ π

0

f(r) sinnr dr

)

(

(
∫ t

0

e−n2k(t−τ)dτ

)

sinnx.

But a straightforward integration gives
∫ t

0

e−n2k(t−τ)dτ =
1

kn2
(1− e−n2kt).
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Therefore

u(x, t) =
2

π

∞
∑

n=1

1

kn2
(1− e−n2kt)

(
∫ π

0

f(r) sinnr dr

)

sinnx.

Taking the limit as t→ ∞ gives

U(x) ≡ limu(x, t) = u(x, t) =
2

π

∞
∑

n=1

1

kn2

(
∫ π

0

f(r) sinnr dr

)

sinnx.

Now consider the steady state problem

−kv′′ = x(π − x), v(0) = v(π) = 0.

This can be solved directly by integrating twice and using the boundary con-

ditions to determine the constants of integration. One obtains

v(x) = − 1

12k
(2πx2 − x4 − π3x).

To observe that the solution v(x) is the same as the limiting solution U(x)

we expand the right side of the v–equation in its Fourier sine series on [0, π].

Then

−kv′′ =
∞
∑

n=1

cn sinnx,

where

cn =
2

π

∫ π

0

r(π − r) sinnrdr.

Integrating the differential equation twice gives

−kv(x) + kv′(0)x =

∞
∑

n=1

cnn
−2(sinnx− x).

Evaluating at x = π gives

kv′(0) =
∞
∑

n=1

cnn
−2.

Whence

kv(x) =

∞
∑

n=1

cnn
−2 sinnx,

or

v(x) =
2

kπ

∞
∑

n=1

1

n2

(
∫ π

0

f(r) sinnr dr

)

sinnx.

Hence v(x) = U(x).
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Exercise 4. Homogenize the boundary conditions by letting w(x, t) = u(x, t)−
Ax. Then the equation for w is wt = wxx with w(0, t) = w(1, t) = 0 and

w(x, 0) = cosx−Ax. The w-problem is a straightforward separation of variables

problem with homogeneous equation and boundary conditions.

Exercise 5. Refer to Remark 4.29. First find the solution of the steady-state

problem which is U ′′(x) = −Q, U(0) = 0, U(1) = 2u0. This is easily solved to

get

U(x) = −1

2
x2 + (2u0 +

1

2
Q)x.

Now take w(x, t) = u(x, t)−U(x). It is easily seen that w satisfies the problem

wt = wxx with w(0, t) = w(1, t) = 0 and w(x, 0) = u0(1−cosπx)−U(x), which

is a standard separation of variables problem.

Exercise 6. Follow the steps in Remark 4.30.

Exercise 7. Again, use Remark 4.29; the nonhomogeneous equation has a

source term that depends only on x. The steady-state solution satisfies U ′′(x) =
− 1

k sin 3πx, with U(0) = U(1) = 0. By integrating twice,

U(x) =
1

9π2k
sin 3πx.

Take w(x, t) = u(x, t)−U(x). Then w satisfies a homogenous problem wt = wxx

with w(0, t) = w(1, t) = 0, and the initial condition is w(x, 0) = sinπx−U(x).

This is solved by separating variables.

Exercise 8. Typographical error : The boundary condition at R = R1 is u = u1.

Follow Example 4.31.

Exercise 9. Follow Example 4.32.

Exercise 10. The problem is

ut = ∆u+ f(r, t) 0 ≤ r < R, t > 0,

u(R, t) = 0, t > 0,

u(r, 0) = 0, 0 < r < R.

For w = w(r, t, τ) we consider the problem

wt = ∆w 0 ≤ r < R, t > 0,

w(R, t, τ) = 0, t > 0,

w(r, 0, τ) = f(r, τ), 0 < r < R.
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This is the model for heat flow in a disk of radius R; the solution is given by

equation (4.53) in Section 4.5 of the text. It is

w(r, t, τ) =
∑

cn(τ)e
−λnktJ0(znr/R),

where zn are the zeros of the Bessel function J0, λn = z2n/R
2 and

cn(τ) =
1

||J0(znr/R)||2
∫ R

0

f(r, τ)J0(znr/R)rdr.

Then

u(r, t) =

∫ R

0

w(r, t − τ, τ)dτ.

Exercise 11. The source term depends only on r, so take w(r, t) = u(r, t) −
U(r), where U(r) is the steady-state solution to r−1(rU ′)′ = −f(r), U(R) = u0.

We obtain

U(r) =

∫ R

r

1

ρ

∫ ρ

0

σf(σ)dσ dρ+ u0.

Then w satisfies a homogeneous differential equation and boundary condition.

4.8 Poisson’s Equation

Exercise 1. u(r, θ) = (1/
√
2)r sin θ.

Exercise 2. There is no θ dependence in the problem, so take u = u(r).

Substituting into the equation gives (ru′)′ = −Ar. Integrating twice gives

u(r) = − 1
4Ar

2 + c1 ln r + c2. For boundedness, take c1 = 0. Applying the

boundary condition at R gives c2 = 1 +AR2/4. Thus

u =
1

4
(R2 − r2) + 1.

Exercise 4. The solution depends only on r. Try u = U(r), where U is to be

determined.

Exercise 5. The solution depends only on r. Try u = U(r), where U is to be

determined.

Exercise 8. Following the hint in the text we have

u(x, y) =

∞
∑

n=1

gn(y) sinnx,
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where we find

g′′n − n2gn = fn(y), gn(0) = gn(1) = 0.

Here, the fn(y) are the Fourier coefficients of f(x, y). From the variation of

parameters formula

gn(y) = aeny + be−ny − 2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ.

Now gn(0) = 0 implies b = −a. So we can write

gn(y) = 2a sinhny − 2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ

which gives, using gn(1) = 0,

a =
1

n sinhn

∫ 1

0

sinh(n(ξ − 1))fn(ξ)dξ.

Thus the gn(y) are given by

gn(y) =
2 sinhny

n sinhn

∫ 1

0

sinh(n(ξ − 1))fn(ξ)dξ −
2

n

∫ y

0

sinh(n(ξ − y))fn(ξ)dξ.
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Applications in The Life Sciences

5.1 Age-Structured Models

Exercise 1.Write

1 =

∫ 8

3

4e−(r+0.03)ada = − 4

r + 0.03

(

e−8(r+0.03) − e−3(r+0.03)
)

,

and use a software package or calculator to solve for r.

Exercise 2. First note that u(a, t) = 0 for a > t+ δ, since f(a) = 0 for a > δ.

For (a) observe that the renewal equation (5.9) is

B(t) =

∫ t

0

βB(t− a)e−γada+

∫ ∞

0

βf(a− t)e−γtda.

The first integral becomes, upon changing variables to s = t− a,
∫ t

0

βB(t− a)e−γada =

∫ t

0

βB(s)e−γ(t−s)ds.

The second integral is
∫ ∞

0

βf(a− t)e−γtda =

∫ t+δ

t

βu0e
−γtda = βu0δe

−γt.

For (b), differentiate (using Leibniz rule)

B(t) =

∫ t

0

βB(s)e−γ(t−s)ds+ βu0δe
−γt
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to get

B′(t) =

∫ t

0

βB(s)e−γ(t−s)ds(−γ) + βB(t)− γβu0δe
−γt = (β − γ)B(t).

For (c) note that the last equation is the differential equation for growth-decay

and has solution

B(t) = B(0)e(β−γ)t.

Therefore the solution from (5.7)–(5.8) is given by

u(a, t) =







0, a > t+ δ

u0e
−γt, t < a < t+ δ

B(0)e(β−γ)te−βa, 0 < a < t.

Finally, for part (d) we have, using part (c),

N(t) =

∫ t

0

u(a, t)da+

∫ t+δ

t

u(a, t)da

=

∫ t

0

B(0)e(β−γ)te−βada+

∫ t+δ

t

u0e
−γtda

=
B(0)

β
e(β−γ)t(1 − e−βt) + δu0e

−γt.

Exercise 3. Integrate the PDE from a = 0 to a = ∞ to get

N(t) = −
∫ ∞

0

uada−m(N)N = B(t)−m(N)N.

To get an equation for B we differentiate the B(t) equation to get

B′(t) =

∫ ∞

0

b0e
−γautda =

∫ ∞

0

b0e
−γa(−ua −m(N)u)da

= −m(N)B(t)−
∫ ∞

0

b0e
−γa(ua)da

= −m(N)B(t)−
[

b0e
−γau|∞0 +

∫ ∞

0

b0γe
−γauda

]

= −m(N)B(t)− b0B(t)− γB(t).

To obtain the next-to-last line we used integration by parts. In summary we

have the dynamical system

N ′ = B −m(N)N,

B′ = (b0 − γ −m(N))B.
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In the phase plane the paths or integral curves are defined by

dB

dN
=

(b0 − γ −m(N))B

B −m(N)N
.

Observe that B = (b0 − γ)N is easily shown to be a solution to this equation.

It represents a straight line in the NB plane. The line B=0 is a horizontal

nullcline where the vector field points to the left. Another horizontal nullcline

is the vertical line N = N∗, where N∗ is the root ofm(N) = (b0−γ). The point
P = (N∗, (b0 − γ)N∗) is an equilibrium that lies on the straight line solution

curve B = (b0 − γ)N. The solution cannot oscillate since that it would require

it cross the straight line, violating uniqueness. On the straight line solution,

the direction is toward the point P .

Exercise 5. Let ξ = a− t, τ = t. In these characteristic coordinates the PDE

becomes

Uτ = − c

d− ξ − τ
U.

Separating variable and integrating gives

U = (d− ξ − τ)cϕ(ξ)

or

u(a, t) = (d− a)cϕ(a− t),

which is the general solution. Now, for the region a > t we use the initial

condition to determine ϕ. We have

u(a, 0) = (d− a)cϕ(a) = f(a),

which gives ϕ(a) = f(a)(d− a)c. Hence

u(a, t) = (d− a)cf(a− t)(d − a− t)−c, a > t.

For the region a < t we use the boundary condition. to determine ϕ. Thus,

u(0, t) = dcϕ(−t) = B(t),

or

ϕ(t) = B(−t)d−c.

Whence

u(a, t) = (d− a)cB(t− a)d−c, 0 < a < t.

Exercise 6. Using Taylor’s expansion to write

u(a+ da, t+ dt) = u(a, t) + ut(a, t)da+ ut(a, t)dt+ higher order terms.
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5.2 Traveling Wave Fronts

Exercise 1. The traveling wave equation can be written

−cU ′ = DU ′′ − 1

2
(U2)′.

Integrating, we get

−cU = DU ′ − 1

2
U2 +A.

Using the boundary condition at z = +∞ forces A = 0. Using the boundary

condition at z = −∞ gives the wave speed c = 1/2. Therefore

DU ′ =
1

2
U(U − 1).

This DE has equilibria at U = 0, 1; the solution can be found by separating

variables or noting it is a Bernoulli equation (see the Appendix on Differential

Equations). The graph falls from left to right (decreasing), approaching 0 at

plus infinity and 1 at minus infinity.

Exercise 2. The traveling wave equation may be written

−cU ′ = U ′′ − 1

3
(U3)′.

Integrating, we find that the constant of integration is zero from the z = +∞
boundary condition. Then

−cU = U ′ − 1

3
U3.

Applying the condition at z = −∞ we get

−cUl = −1

3
U3
l ,

or

−cUl +
1

3
U3
l = −1

3
Ul(3c− U2

l ) = 0.

Therefore Ul =
√
3c.

Exercise 3. To have constant states at infinity we must have F (0, vr) = 0 =

F (ul, 0) = 0. The traveling wave equations are

−cU ′ = DU ′′ − γU ′ − aF (U, V ),

−cV ′ = −bF (U, V ).
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Clearly we may write a single equation

−cU ′ = DU ′′ − γU ′ − ac

b
V ′.

Now we may integrate to get

−cU = DU ′ − γU − ac

b
V +A.

The right boundary condition forces A = acvr/b. The left boundary condition

then gives

−cul = −γul +
ac

b
vr

or

(γ − c)ul =
ac

b
vr > 0.

Therefore c < γ.

Exercise 5. The traveling wave equation is

−c
[

(1 + b)U −mU2
]′
= U ′′ − U ′.

Integrating gives

−c
[

(1 + b)U −mU2
]

= U ′ − U +A.

¿From the boundary condition U(+∞) = 0 we get A = 0. Since U(−∞) = 1,

we get

c =
1

1 + b−m
> 0.

The differential equation then simplifies to

U ′ = (1− c− cb)U + cmU2,

which is a Bernoulli equation. It is also separable.

5.3 Equilibria and Stability

Exercise 1. The equilibria are roots of

f(u) = ru(1 − u/K)− hu = u(r − r

K
u− h) = 0.

So the equilibria are

u1 = 0, u2 =
r − h

r
K.
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To check stability we calculate f ′(u1) = r − 2r
K u − h. Then f ′(0) = r > 0, so

u1 = 0 is unstable. Next

f ′(
r − h

r
K) = r − 2r

K

r − h

r
K − h = r − 2r + 2h− h = −r + h.

Therefore u2 is stable if r > h and unstable if r < h.

Exercise 2. Follow the steps indicated in the problem.

Exercise 3. The steady-state solution is ue = 3, ve = 2/9. The Jacobian

matrix is

J =

(

1
3 9

− 4
3 −9

)

.

Therefore, equation (5.36) becomes

det

((

σn 0

0 σn

)

+ n2

(

D 0

0 1

)

−
(

1
3 9

− 4
3 −9

))

= 0.

Simplifying gives

det

(

σn + n2D − 1
3 −9

− 1
3 σn + n2 + 9

)

= 0.

Exercise 4. To obtain (a) just substitute ue(x) into the PDE and check the

boundary conditions. To get (b) substitute u = ue(x) + U(x, t) into the PDE

to obtain

Ut = u′′e + Uxx + (ue(x) + U(x, t))(1 − ue(x)− U(x, t)),

or

Ut = u′′e + Uxx + ue(x)(1 − ue(x))− ue(x)U + U(1− ue(x)) − U2(x, t).

But u′′e + ue(x)(1 − ue(x)) = 0, and neglecting the nonlinear term gives

Ut = Uxx + (1− 2ue(x))U,

which is the linearized perturbation equation. The boundary conditions are

U(±π/2) = 0. For part (c) assume that U = eσtg(x) and substitute to get

σg = g′′ + (1− 2ue(x))g,

or

g′′ +
cosx− 5

1 + cosx
g = σg,

with g = 0 at x = ±π/2. Finally, to prove (d), we proceed as in the hint. If

this BVP has a nontrivial solution, then it must be, say, positive somewhere
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in the interval. (The negative case can be treated similarly). So it must have a

positive maximum in the interval. At this maximum, g > 0, g′′ < 0. Therefore

cosx− 5

1 + cosx
g < 0.

So the left side of the DE is negative, so σ < 0.


