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Abstract

In this paper we give an overview of the application of chemical reactor
theory to models of digestion processes and indicate how those models extend
to eco-physiological questions of modulation of digestion and feeding. In par-
ticular, we discuss processes that organisms may use to manage their nutrient
intake, including optimality, ecological stoichiometry, and regulatory physiol-
ogy. In the context of regulatory physiology we present a new, detailed model
that forges an eco-physiological connection between animal foraging and di-
gestion modulation. The discussion focuses on insect herbivores, in particular
common grasshoppers and locusts. In presenting the highlights of reactor
models we set up a mathematical model of pre- and post-ingestive changes
that an insect may employ when faced with suboptimal foods. To achieve
this post-ingestive change we employ a simple control mechanism that is de-
pendent on the ratio of the concentration of two nutrients in the hemolymph.
The control serves to limit the absorption of the nutrient that is occurring
in excess, thus allowing the insect to avoid “jamming” the regulatory mech-
anisms that affect feeding. At the same time, pre-ingestive controls influence
the inter-meal time period to allow insects to eat more frequently when feed-
ing on suboptimal food. We examine the effect that the control mechanisms
have on nutrient uptake by simulating feeding on two foods of different qual-
ity. Numerical simulations give results that are qualitatively congruent with
empirical data.

1 INTRODUCTION

Chemical reactor models of the digestive system and its components have provided
an important framework to quantitatively study physiological processes involved
in food processing. One fundamental issue in eco-physiology is to link digestion
to ecological factors, such as resource acquisition. For many years these two fields
developed nearly independently. But there is now an increasing effort to show that
pre-consumption and post-consumption events are intimately related and form a
integrated picture of the overall, whole individual. In this paper we show how
the chemical reactor paradigm is useful in developing this link by including feed-
backs and controls that dictate foraging behavior. The specific goal of the paper is
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twofold: first, to give an overview of modeling digestion processes by chemical reac-
tor theory, and show how digestion modulation can occur through optimization, or
through maintaining homeostasis in a context of regulatory physiology or ecological
stoichiometry; and second, to present a new, detailed model of digestion modulation
in the context of regulatory physiology that provides a connection between forag-
ing and digestion. Although the discussion is focused on insect herbivores, and, in
particular, common grasshoppers and locusts, it may be applicable to other taxa.

It is not hard to imagine that the digestive structure of an insect herbivore is
much like an industrial chemical processing plant. Chemical reactants (nutrients,
elements) are fed into the system, reactions occur, and the products are used to
supply the energy to drive the reactor itself and carry out all of the activities re-
quired, including growth, reproduction, maintenance, as well as provide the energy
to find resources in the first place. Although chemical reactor theory, in the context
of chemical engineering, had been used for decades to design industrial applications,
it wasn’t until the mid 1980s that D. L. Penry and P. A. Jumars applied the ideas
to digestion processes in simple organisms. Now, this chemical reactor modeling
strategy has been applied to numerous animal gut designs, and it has provided
a quantitative framework for addressing many complex questions about digestion
processes in both vertebrates and invertebrates up and down the complexity scale.
Furthermore, many experimental studies have shown that food acquisition and food
processing are not independent processes. That this should be true is intuitively
clear. It has been confirmed by many experiments that an animal’s environment,
habitat, and diet can affect gut morphology and food processing rates, while phys-
iological cues and processes can trigger hunger and subsequent foraging activities.

Chemical reactor models provide a framework for linking physiological activities
to ecological ones. For example, a foraging response (a gustatory response) can be
stimulated by chemical signals in the metabolic pathways of the organism. One
way this can occur is through nutrient concentrations in the circulatory system.
When a certain nutrient or chemical concentration falls below some threshold level,
a gustatory response results. When the concentration exceeds some upper target
threshold, feeding ceases. Also, other cues, like defecation and stresses in the gut
itself, can induce feeding or the the cessation of feeding. Chemical reactor theory,
by design, enables one to calculate concentrations in the reactor, input and output
rates, chemical kinetics, absorption rates, and so on. All of these can provide
feedbacks and controls on organism activities. By linking different types of reactors
one can monitor concentrations in different portions of the digestive system, e.g. in
both the midgut and hemolymph of an insect.

In the first part of this paper we review some of the important developments
in chemical reactor applications to digestion in simple organisms. We define the
different types of reactors and discuss their role in modeling different types of gut
structures. The emphasis is on the quantitative features. We show how reactor the-
ory can address questions of optimal strategies for food processing. Next we discuss
how homeostasis can be a basis for regulation. This latter theory is developed in
the contexts of ecological stoichiometry and regulatory physiology.

In the second part of the paper (Section 5) we analyze a specific organism and
address the issue of how nutrient titers can influence gustatory responses and sub-
sequent foraging. The model is strongly motivated by the extensive and important
experimental work of S. Simpson and D. Raubenheimer (references are given below)
on gustatory responses in locusts. This model, set in the context of regulatory phys-
iology, is resolved by numerical simulations, and we are able to calculate feeding
responses when the animal is fed foods of different quality.
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Figure 1: Schematic showing the lipid bilayer membrane and various solute trans-
port mechanisms that permit nutrients in the lumen to cross the gut wall.

2 NUTRIENT ACQUISITION MODULATION

Viewed as a model process, nutrient acquisition can be idealized and simplified to
the following serial steps: foraging, consumption of large macromolecules, break-
down into smaller units, absorption, and use of the newly acquired nutrients in
the organism’s energy budget. Fundamental questions in eco-physiology are: what
modulates this process and how are different parts of the process interrelated?

The first step, foraging, is an extensive subject area and can be subdivided
into search strategies, attack strategies, and food handling strategies. These are
discussed in detail in Stephens & Krebs (1986). Digestion begins when the food
is consumed. Carbohydrates, fats, and protein are broken down in parts of the
gut into simpler compounds like sugars, alcohols and fatty acids, and amino acids.
These can then be absorbed (or assimilated) across the gut wall into the animal’s
circulatory system where they are distributed to the organism’s energy budget to
carry out basic organism activities: maintenance and respiration, reproduction,
growth or production, and storage. A portion allocated to maintenance drives the
energy needs of the organism to search, attack, and handle food back at the first
step of the acquisition process.

Nutrient absorption in invertebrates, with all their diverse strategies, is discussed
in detail in Wright & Ahearn (1997). The epithelial surfaces of the gut represent a
limiting barrier in the overall nutrient acquisition process. Absorption of the simple
compounds, which are products of substrate breakdown, across these barriers can
be accomplished through carrier-mediated transport or simple diffusion. The lipid
bilayer, which forms the common structure of membranes, consists of two oppos-
ing phospholipid molecules with a polar hydrophilic group forming the head and a
nonpolar hydrophobic tail composed of fatty acids. See figure 1. The membrane is
impermeable to most water soluble molecules. Interspersed in the layer are integral
protein molecules that mediate the transport of molecules across the membrane.
They carry out the functions of the membrane and come in many types, depending
upon their function. Sugars and amino acids are hydrophilic and will not cross
membranes by passive diffusion, so the selective proteins catalyze the transmem-
brane movement of these hydrophilic substances. Because membranes are lipids,
lipophilic molecules can cross easily by simple diffusion through the membrane.
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Figure 2: First-order and Michaelis-Menten kinetics.

The membrane transport proteins are of two types: carrier proteins that bind to
solutes and act as gates through the membrane as reactions occur, and channel
proteins that form hydrophilic pores that offer faster transport. Both of these types
of transport, as well as simple diffusion, are passive transport mechanisms. Active
transport mechanisms are protein binding sites that require energy (e.g., ATP) for
transport of solutes.

From a mathematical modeling viewpoint, this electrochemical boundary through
which fluxes occur is highly complicated. The usual approach is to model the de-
tailed chemistry by simple reactions. First, we can model the breakdown of sub-
strate molecules by enzyme reaction of the form S + E — E+ products, where S
is a substrate (of concentration s) and E is an enzyme. These enzyme-substrate
reactions are assumed to have reaction rate

_ kms
- kn+s’

where k,, is the maximum rate (saturation) and kj is the concentration at half-
saturation. This is the usual Michaelis-Menten form. For simpler reactions, for
example, S —products, we assume first-order kinetics,

R = ks,

where k is the rate constant. These forms are plotted in figure 2. For membrane
transport, or absorption, we use first-order kinetics for simple diffusion or channel
diffusion, and Michaelis-Menten kinetics for carrier-mediated transport. See Alberts
(1994) for a full discussion of membrane transport. Many books discuss Michaelis-
Menten kinetics; Edelstein-Keshet (1988) and Murray (2002), for example, give
simple mathematical derivations of the Michaelis-Menten law based upon singular
perturbation methods and chemical kinetics theory.

Some digestive physiologists rightfully feel uncomfortable with “assuming away”
the detailed chemical kinetics as is often done in developing mathematical models.
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But this strategy has been successful in inventing qualitative models that capture
some of the important features of real processes. Models sacrifice precision and
realism to provide qualitative information about the whole organism. In all models
there is a hierarchy that involves making judgments of selecting variables, determin-
ing what interactions to include, identifying limiting steps, all with the desirability
of omitting complications. Model problems in many areas have served to illustrate
the broad interactions of different mechanisms and how those mechanisms affect
important outcomes.

We also note the importance of temperature effects, especially in insects. Nutri-
ent intake rates, substrate-breakdown rates, and absorption rates are all tempera-
ture dependent, and they strongly affect development rates, phenology, and feeding.
To model temperature effects on digestion we can make the rate constants in the ki-
netics of both substrate-breakdown and absorption functions of body temperature.
Because body temperature is imposed from environmental temperature, we do not
need separate energetics for temperature variation. Typically, we use the @1o-rule
(defined below) to determine the magnitude of the temperature effects upon the
reaction rates in our model of digestion modulation in Section 5.

Once nutrients cross the gut boundary they are distributed to the metabolic
pathways and provide for the energy needs of the organism. The circulatory system
(or the hemolymph in an insect) can be regarded as a chemical reactor, a pool
for nutrients that are then allocated to the energy budget. Looked at in this way,
nutrients are “currency” that an organism distributes to meet its needs. A certain
amount is drained for basal maintenance and respiration, and then the rest is used
for structure (growth and production) and reproduction. Excess amounts may
be stored to meet later needs. It is also in this pool where threshold nutrient
levels can trigger and control gustatory responses, or feedbacks that characterize
the physiological-ecological link. Introductions to the concepts of energy budgets,
as applied in our models, can be found in Gurney & Nisbet (1998), Lika & Nisbet
(2000), or Kooijman (2000).

Now that we have reviewed the basic ideas in nutrient acquisition, we can ask
what drives it. What modulates portions of this multi-step process and how do
those components interrelate?

Karasov & Hume (1997) present in their review an excellent rationale for opti-
mality. The key issue in optimization arguments is to select the objective function,
i.e., the function to be maximized or minimized. Going back to a fundamental pa-
per by Sibly (1980), one can reason that an organism performs so that it maximizes
the rate that energy is obtained. Quantitatively, these arguments can be presented
and analyzed in the context of the chemical reactor paradigm, as discussed below.
For example, modulation occurs when an organism selects an optimal food reten-
tion time by maximizing its average net intake over that time. These relationships
were first examined by Penry & Jumars (1986, 1987) for a variety of gut designs,
and later authors applied the theory to specific taxa. Selection of this objective
function, however, proved to be incorrect for certain species, and alternatives have
been proposed. For example, time minimization has been one criterion—get the food
through the system as fast as possible with extraction efficiency.

Another possible consumer strategy, which we follow in our discussion below,
is to reach a nutritional goal, or target, by regulating nutrient intake. This tactic
has been called “satisficing”. This can be accomplished in different ways: through
food selection, regulating assimilation across the gut wall, or selective excretion of
certain over abundant or excess nutrients. Closely related is a strategy of homeosta-
sis maintenance, which we review below. For homeostasis an organism maintains
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Figure 3: Three types of chemical reactors: (a) batch reactor (BR), (b) continuously
stirred tank reactor (CSTR), and (c) plug flow reactor (PFR).

tight control on nutrient ratios (e.g., its C:N ratio) in its system, either expelling
excess nutrients through excretion or egestion, or limiting excess nutrients through
differential assimilation.

Still other strategies have been posed. In optimal foraging (e.g., see Belovsky
1997), relations between allometric quantities, food characteristics, and digestion
characteristics (food residence time) lead to a constrained optimization problem
where time and capacity are limiting quantities. Other strategies involve regulation
of temperature, water, and/or pH. Yet another strategy, especially when food is
scarce or is changed, is to compensate by changing the morphology of the gut,
although the time scale over which this can occur may be much longer than the
time scale for food availability changes. See Whelan & Schmidt (2003) for a review
of digestive strategies.

3 CHEMICAL REACTOR MODELS

A chemical reactor model, or chemostat model, is an idealization of a complex
process. Biochemical reactions and the overall electrochemistry of digestion is com-
plicated and not thoroughly documented or understood in all taxa. As is the case
for all mathematical models, the chemical reactor provides a caricature of the real
situation, stripped down to essential elements with many of the fine details ignored.
The idea of a model is not to make exact quantitative predictions, but to indicate
the important qualitative features of the biological processes. Basically, a chemical
reactor is a spatial unit, or volume, where chemicals are fed in, react, and then
finally are absorbed or ejected. The fundamental physical law that gives rise to
the model equations is mass conservation: the rate of change of the mass of a con-
stituent inside the volume must equal the rate that the constituent flows in, plus
(minus) the rate it is formed (consumed) by chemical reaction, minus the rate it
is absorbed, minus the rate it flows out. It is common to identify three types of
reactors: a batch reactor (BR), a continuously stirred tank reactor (CSTR), and a
plug flow reactor (PFR). These are shown in figure 3. BRs process food in discrete
portions. In a BR the reactants are loaded instantaneously at time ¢ = 0, when
the clock starts. Then the reactions occur over a time T' (the residence time), and
at the end the reactor is instantaneously emptied. BRs are appropriate for model-
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ing, for example, the gastro-vascular cavities in some invertebrates like hydra and
coelenterates; the cavity is filled quickly, reaction and absorption occur, then the
material is expelled quickly. CSTRs provide for continuous flow in and out of the
reactor. CSTRs provide models of large sacular gut chambers, like a crop (foregut)
or stomach. CSTRs can operate in a steady state, where the input rate equals the
output rate and concentrations are constant, or it can operate in a time-dependent
manner where concentrations and flow rates are variable. A CSTR that is loaded
instantaneously at time ¢ = 0 and then empties over time is called a semi-batch
reactor. In both BRs and CSTRs there are no spatial concentration gradients of
reactants or products, and the contents are uniformly and continuously mixed. This
uniformity property is an idealization because we often think of absorption occur-
ring only along the boundary of the reactor, i.e., along the gut lining, which would
in fact induce concentration gradients from the boundary to the interior of the gut
volume. PFRs, or tubular reactors, model tubular gut structures such as a midgut
structure, a hindgut, or some kind of intestine. In a PFR reactants, say contained in
a bolus, flow continuously into the inlet at one end and react as they pass through.
In the radial direction it is assumed there are no concentration gradients (uniform
mixing in the radial direction), but in the axial direction there is variation. Thus,
in each cross-section the concentrations are assumed to be constant. Again this
is an idealization for absorption or for conversion reactions that take place on the
boundary.

Penry & Jumars (1986, 1987), Woods & Kingsolver (1999), and Jumars (2000a)
have laid out basic equations for different types of gut structures. A qualitative dis-
cussion with additional references, especially for the digestive system in mammals,
is given in Martinez del Rio et al (1994). Here we present an overview in a general
case. Chemical reactor models can be found in textbooks on reaction kinetics (e.g.,
see Nauman 1987).

3.1 Batch Reactors (BRs)

To model a BR of volume V' we let n; = n;(t) be the concentration (mass per
volume) of the jth (j = 1,2,...,J) chemical species N; in the reactor at time
t, with n;(0) = njo being the initial concentrations of the load. We will often
refer to the IN; as nutrients, but they may be substrates, enzymes, elements, or
products of substrate breakdown. Ecological stoichiometry deals with elements,
whereas regulatory physiology deals with nutrients (protein, carbohydrates, fats);
detailed physiology is concerned with the actual chemical species themselves and
exact, resolved chemical reactions.

By mass balance, the rate of change of the mass of the jth constituent in the
reactor is equal to rate R; that it is created (positive) or consumed (negative), less
the of rate W; of absorption at the boundary. In symbols,

d

dt(Vn]) :VR](nl,,nJ)fVWJ(nl,,nJ), ]:1,2,,J (1)

Both rates may depend upon concentrations of the constituents, and on temperature
(which in not indicated in the notation), and they are given in mass per unit time
per volume. Since V is constant, it may be cancelled from these equations. The
reaction rates R; are specified by the chemical kinetics of reaction, or the law of
mass action, and the absorption rates W; depend upon the type of transport across
the gut boundary (simple diffusion or carrier mediated transport). Equations (1)
form a J-dimensional dynamical system of differential equations in nutrient space
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(n1,...,ns). In general they are nonlinear and cannot be solved in analytic form.
The behavior of the solutions of (1) can be complex, including chaotic regimes.

Typically, to study optimality and modulation of digestion processes in BRs we
are interested in the dynamics and the total amount of nutrient uptake over a given
residence time, or holding time, T. For example, suppose a single nutrient N is
created by the one-step reaction A — N with first order kinetics R = —ka, where
k is the rate constant, and the absorption rate of the nutrient has the Michaelis-
Menten form W = kk}:"” Then the dynamics is

+n’
dn ko
E—k(ao—n)—kthn, (0) =0,

where ag is the initial concentration of A. The steady state, or equilibrium, concen-
tration is found by setting dn/dt = 0. In the present case there is a single positive
stable equilibrium at

N =

n=

[ao—kh— k—m+\/(a0—kh—k—m)2+4a0kh ,
k k

so the concentration n in the gut steadily increases from its zero initial value,

approaching the equilibrium concentration 7.

One way to assess the efficiency of a BR is to determine the time 7' it takes to
achieve a given conversion. Here we investigate a different question, namely, what
is the optimum time to keep the food in the gut, considering there is a cost to
obtaining the food and a cost to digest it.

We illustrate modulation through optimality using the example above. The issue
is how long should an animal whose gut is modeled by a BR retain the contents
before expulsion. There is a digestion cost in retention and a foraging cost for
obtaining the food in the first place (including finding, capturing, and handling
food, and avoiding predators). We can argue as follows, equating the nutrient to
energy currency. The uptake across the gut wall over a residence time T is

_ T kpn(s)
U(T) = /O Vs

The uptake U(T') plots as an increasing sigmoid-shaped curve. If we assume the
total cost is C+ DT, where C'is a constant foraging cost and DT is the digestion cost,
proportional to time in the gut 7', then the net uptake is E(T) = U(T) — C — DT,
where we have subtracted the costs. The strategy is to maximize the average net
uptake, or energy gain, over the residence time 7', and choose the optimum residence
time to be the time that maximizes F(T')/T. From calculus we see that

d (E(T)) _ T(U'(T) - D) - (U(T) ~C —DT) _ TU'(T) ~U(T) ~C

ar \ T T2 T2

Therefore the optimal residence time 75y is the time for which the numerator is
ZEro, or
U(Topt) — C

Topt .

This result has an interesting interpretation in time-energy space (figure 4) that al-
lows us to calculate 5,y graphically. It requires that the slope of the curve U(T) —C
at the optimum residence time is the same as the slope of the straight line connect-
ing the origin to the point (Topt, U(Topt) — C) on the curve. Generally, we expect

U/(Tor)t) =
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Figure 4: Two curves showing the total uptake minus the foraging cost for two
different foraging costs. The optimal residence times A and B occur when the
straight line emanating from the origin is tangent to the curves. These are the
points of diminishing returns. Note that a larger foraging cost (lower curve) gives
a longer residence time.

that the uptake curve U(T) is a sigmoid shaped curve, so the optimal retention
time may be found graphically. This is basically the marginal value theorem in eco-
nomics where it is argued that a total resource, after an initial gain, begins in time
to show diminishing returns; the intersection of the straight line from the origin and
the net gain function is the point to “sell off” the resource. We also observe that if
the foraging costs are higher, the uptake graph is shifted further downward and the
tangent line criterion will give a longer residence time; so, the greater the cost of
foraging, the longer the organism retains food. Sibly (1980) was the first to apply
these ideas to digestion processes. See also Karasov (1988), and Martinez del Rio
et al (1994). Clearly, chemical reactor models allow for a quantitative assessment
of the basic concepts.

3.2 CSTRs

CSTRs, which model sacular organs, are more versatile in that they permit inflow
(a feed) and outflow. If ¢in(¢) and gout(t) represent time-dependent volumetric flow
rates (volume per time) in and out of the reactor, then the volume of the lumen is
time-dependent and given by V(t) = Vo + t(¢in(t) — gout(£)), where V} is the initial
volume. If n}(t) denotes the concentration of the jth nutrient in the feed, then the
mass balance law (1) is modified by adding the input and subtracting the output,
or

d

E(V(t)nj) = Qm(t)n;n(t) — Gout (t)n] +V(t)RJ (nh ceey nJ) - V(t)WJ (nla () TLJ), (2)
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j=1,2 ..., J. This system of J differential equations for the nutrient concentrations
cannot generally be resolved by analytic means, but must be solved numerically.
Under certain assumptions, however, (2) may be reduced to a tractable problem.
If the volumetric flow rates are the same (say, ¢) and the feed concentration is
constant, then the system reduces to the autonomous system
dnj 4q in .
e V(nj —n;)+ Rj(n1,....,n5) — Wi(n,....,ng), j=12,..,J (3)
Most authors have studied CSTR digestion processes under the steady state
assumption of constant nutrient concentrations, which satisfy the J algebraic con-
ditions ¢
V(n}n—nj)—&—Rj(nl,...,nJ):Wj(nl,...,nj). (4)
Jumars (2000a) considers the interesting, simple case of a substrate N; entering
the reactor and breaking down into a nutrient No that is then absorbed across the

gut boundary. The reaction is Ny LA N, % absorption, with Ry = —kn; and
Wy = ansy. From (3) the governing equations are

dnl q in
a o vUT ok
dn2

g = _%7742 + kny — ans.

In the steady state (equations (4)) we set the right sides equal to zero and solve for
the equilibrium nutrient concentrations n; = w1, ng = To. After performing some
algebra we find that the equilibrium concentration of the nutrient is

qnitkV
(q+kV)(g+aV)

Ng =

Therefore the total uptake rate J of the nutrient Ny is

qnitakV?
(¢+kV)(qg+aV)

J=aVn, =

We may now ask what flow rate ¢ maximizes the uptake rate. Taking the derivative
of J with respect to ¢ and setting it equal to zero gives

Gopt = V akV.

The maximum absorption rate is then

nyakV ani’ a

Jmax (\/E+\/a)2 <1+\/77)27 T—E.

Observe that the volumetric flow rate (volume per time) is inversely proportional
to the time the food is in the gut. We can gain important qualitative information
from these formulas as follows. If @ > k (r > 1) the process is digestion limited;
if £ > a (1 > r) the process is absorption limited. An organism suddenly faced
with a lower quality of intake food ni* could compensate by increasing its gut size
to maintain maximum efficiency; this corresponds to a larger gopt and a shorter
residence time. If food is low quality because it is difficult to extract, then k
is small and the processes is again digestion limited and corresponds to a large r
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value. The organism can again compensate by decreasing its residence time. Yang &
Joern (1994) documented this behavior in grasshoppers—poor food quality is ejected
quickly while high food quality is retained. Similar calculations may be made with
Michaelis-Menten kinetics, although the algebra is more tedious.

Logan, Joern, & Wolesensky (2003) analyzed a time-dependent case where the
gut is loaded instantaneously at ¢ = 0 with a substrate and then emptied at a
constant rate g, so that the volume is V' (t) = Vi —gqt. This is the case of a semi-batch
reactor that empties with residence time 7" = V;/q. The reaction is N3 — Ny —
absorption, where N7 is the substrate and N» is a nutrient product that is absorbed
across the boundary. The reactor equations (2) become, for t < T,

% = —qni — V()Ry(n1),
% —qng — V(t)W2(n2)7

where R; is the substrate-product reaction rate and Wy is the absorption rate of
N,. Both rates could be either first-order or Michaelis-Menten. In this semi-batch
case, when the derivative on the left sides of the equation is expanded, the flux
terms cancel and we obtain the simple autonomous model

dnl

. = - (n1)7
d’ng
E = —Wg(nz).

The conditions n1(0) = sp and ny(0) = 0 give the initial substrate and product
concentrations. If both rates are first order, i.e., Ry = kny and W5 = ans, then the
system can be solved analytically.and the optimal residence time calculated as in
the previous example. This time dependent model gives the same qualitative results
as the CSTR operating in steady state, and it is discussed in detail in Logan, Joern,
& Wolesensky (2003).

The model above can be extended to the case where the substrate input con-
centration ni® is a function of time t. Thus it measures a varying food quality. In
this case the reactor equations are nonhomogeneous and have the form

dnl q in
o - V(m (t) —n1) — kni,
dTlQ

I - —%77/2 + kny — ans.

The initial conditions are ny(0) = n2(0) = 0, which means that concentrations of
both the substrate and nutrient product are initially zero; for t > 0 substrate is input
at the concentration ni*(t), and the grazing rate ¢ is assumed to be constant. This
nonhomogeneous linear, two-dimensional system can be solved by standard methods
(e.g., Ledder 2005) using the variation of parameters formula. The solution is

t
mo) = & [ e

_ qk ! in A(t—7) _ JA2(t—7)
na(t) = 7V(afk)/0 ny(1){e e tdr,

where Ay = —k—¢q/V and Ay = —a—¢q/V are the eigenvalues of the of the matrix of
the linear system. Therefore we can compute the rate of absorption of the nutrient
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across the gut boundary as VWs = Vany. Then the cumulative uptake of the
nutrient over the length of a meal T is

T ,t
Uiy = 9% / / ni (r){eM =T — A2 b ardr,
7 Vie—k) Jo Jo

With a meal of given food quality, one can calculate the length of the meal T
required to reach a target nutrient concentration C' (i.e., satisfice) by numerically
solving U(T;ni*) = C. We have mentioned this problem in the simple context of
a CSTR in preparation for the discussion in Section 5 where absorption along the
entire length of a tubular gut is modeled. There, the nutrients that are absorbed
across the gut lining are distributed to an energy budget; target concentrations
provide feed backs to initiate or shut down the feeding response.

Including a variable grazing rate ¢ = ¢(t) in the problem results in a nonhomoge-
neous linear system with variable coefficients. This makes the problem intractable
with regard to analytic solution formulas. Moreover, for many organisms, e.g., lo-
custs and grasshoppers, the grazing rate is often a function of food quality, and so
depends on ni". These issues are analyzed in Sections 5 and 6.

3.3 Tubular Reactors (PFRs)

In a tubular reaction chamber of length L and cross-sectional area A the concen-
trations of the nutrients N; must be resolved in both space and time, so n; is a
function of two variables, n; = n;(x,t), where z is the distance along the tubular
gut from its inlet, 0 < z < L. No variation is assumed in the radial direction, so
concentrations in any cross-section are constant. The formulation of mass balance
for tubular reactors leads to partial differential equations (reaction-advection equa-
tions) for the nutrient concentrations. A complete discussion and review is given in
Logan, Joern, & Wolesensky (2002). See Edelstein-Keshet (1988) for a general dis-
cussion of reaction-advection processes. For a gut of constant cross-sectional area,
the governing equations are,

% = —v% + Rj(ni,....,ng) — Wj(ni,...,ng), (5)
j = 1,2,...,J, where v is the speed of the food bolus through the gut. Initial
concentrations u;(z,0) throughout the gut and concentrations u;(0,t) at the inlet
must be specified to make the problem well-posed. But the concentrations at the
exit point x = L cannot be imposed; they are calculated as part of the solution.
When the throughput speed is constant, this system of equations can be reduced to a
system of ordinary differential equations by the transformation to a new coordinate
z moving at the speed v of the bolus, i.e., z = x — vt. Under this transformation
the advection term cancels and (5) becomes

atj = Rj(va”‘vNJ) - Wj(Nla“'aNJ)7 J = ]‘727”"J’

where N; = N;(z,t) = nj(z + vt,t). Because no z-derivatives occur, this system
is essentially a system of ordinary differential equations analogous to (3). This
system is the one discussed by other authors (Penry & Jumars 1986, 1987; Jumars
2000a,b) when discussing PFR models of digestion operating in a steady state.
We note that in many cases the reaction-advection system (5) can actually be
solved analytically; these solutions are derived and catalogued in Logan, Joern,
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& Wolesensky (2002) where temperature dependence, variable cross-sectional area,
and location dependence is included.

In PFRs, the uptake across the boundary of the gut takes place along the entire
gut length, perhaps at different rates depending upon the location. The total uptake
Uj(t) at time ¢t of a nutrient IN; can be calculated by

L
UJ‘(t) :/0 AW]d.’L‘

Using this expression we can discuss optimality issues of optimal retention time as
in the case of BRs and CSTRs mentioned above.

Woods and Kingsolver (1999) account for radial variation in the absorption rate
W; in (5) by including a factor 2/r, where r is the radius of the gut. If there is a
fixed density of binding sites on the gut surface, then the number of sites in a length
dx is proportion to 2wrdx, and the number of molecules of the product molecules in
the lumen is proportional to wr2dz. The ratio of transporters to molecules is 2/7.
As r increases there are proportionately fewer transporters in the wall per number
of molecules in the corresponding lumen volume.

4 MODULATION THROUGH HOMEOSTASIS

Plants can vary widely in their nutrient content and thus their C:N:P ratios. In
contrast, herbivore consumers are much less variable and stay within a restricted
homeostatic range. This stoichiometric imbalance between herbivores and their food
greatly affects consumer’s growth, activity, and strategies to maintain homeostasis
in its elemental ratios. There are two major views regarding how an organism mod-
ulates its intake and assimilation. One is based upon regulatory physiology, and
the other is based upon ecological stoichiometry. In terms of regulatory physiology,
organisms ingest proteins, fats, and carbohydrates, which are then broken down
in highly regulated biochemical pathways during digestion; they are assimilated
across the gut wall as nutrients, like amino acids, sugars, and phosphorus contain-
ing molecules. These nutrients cross the gut wall in definite proportions and are
ultimately used in metabolism in smaller units to drive the organism’s energy bud-
get requirements. These molecules have repeatedly been shown to influence feeding
and digestion (Brett 1993, Anderson & Hessen 1995, Tang & Dam 1999). Studies
in insects have shown the importance of regulating protein and carbohydrate levels
with corresponding consequences for individual performance (Simpson & Rauben-
heimer 1993b, 2000). For example, at the level of food intake, many organisms
have sensory devices that regulate feeding based on these nutrients. Therefore, at
the individual level, through feeding behavior and post-ingestive physiology, ani-
mals regulate their nutritional status, and therefore assimilation and homeostasis
are nutrient-based. On the other hand, ecological stoichiometry focuses upon the
elements themselves, e.g., C, P, and N. These elements represent an index of food
quality rather than representing the full scope of processes determining dietary lim-
itation. Ultimately, however, it is the mass of each element that is conserved and
ecological stoichiometry seeks to resolve elemental concentrations by keeping track
of the mass flow through the entire ecosystem, as it relates to both primary and
secondary production. This view was expressed by Lotka (1925), and more recently
by Sterner & Elser (2002).

A mathematical model for the individual could be based on either approach;
both are supported by experiment. The approach we take is to observe that or-
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ganisms themselves, and the food they consume, are made up of elements. Using
a mass balance approach we account for these elements and formulate a tractable
set of differential equations that models the mass fluxes through the system, where
we treat the individual organism as a chemical reactor. It is less obvious how to
resolve nutrient fluxes of the many complex macromolecules that make up the diet
and the composition of the herbivore itself; e.g., a given ingested protein eventu-
ally disappears through its specific metabolic pathway. An elemental approach can
also complement an experimental program where basic chemical elements (C, N,
and P) of the food, the organism, and the egesta can be measured. This approach
also allows linkage to other levels of biological organization, e.g., nutrient cycling
in ecosystems. Other theoretical models have focused upon elemental, stoichiomet-
ric constraints as well, especially in predator-prey interactions and how elemental
imbalances affect the underlying dynamics (Loladze et al 2000, Mueller et al 2001,
Loladze et al 2003).

We show how modulation works in a three-nutrient system (C, N, P) and de-
velop a model that controls consumer homeostasis through dynamic differential
assimilation (Logan, Joern, & Wolesensky 2004a). A static, two-nutrient case (e.g.,
C and P) was studied by Sterner (1997) and Frost & Elser (2002). They show that
the assumption of strict consumer homeostasis (constant C:P ratio) leads to an
algebraic model of diet constraint relating food quantity and quality, and they de-
fine a homeostasis curve in food quality-quantity space that separates regions where
consumer growth is C-limited (too little carbon) and where it is P-limited (too little
phosphorus). To maintain a constant consumer C:P ratio, the consumer’s diet must
be confined to the curve. A two-dimensional dynamic model developed by Logan,
Joern & Wolesensky (2004b) uses differential assimilation to control assimilation of
elements to maintain the consumer C:P or C:N ratio within a tolerance envelope,
even when the food supply is variable and time-dependent. Below, we illustrate a
static case by defining a strict homeostasic curve in food C N P space relating food
quantity, measured by carbon content times ingestion rate, and two quality variables
defined by food C:P and C:N ratios. An alternate visualization to a three-element
homeostasis representation is given by Thingstad (1987), whose static model for
bacteria relaxes the condition of strict homeostasis, and elemental homeostasis is
represented by regions in a two-dimensional space with axes C:N and C:P, both
relating to the food supply. Also see Sterner & Elser (2002), p195. Secondly, we
introduce the dynamic notion of differential assimilation control to maintain con-
sumer C:P and C:N ratios simultaneously within a set tolerance range, even when
the food quality and quantity leave the homeostasis curve and are time-dependent.
When food has an extreme imbalance, control of elemental assimilation shuts down
absorption of the over-abundant element(s) and subsequently restricts growth in
C-, P-, or N -limited regimes. The model is based upon a dynamic environment
and dynamic responses by the consumer while relaxing the condition of strict home-
ostasis.

An important related issue is where and how homeostasis is maintained in a
herbivore? The answer to this question is not known completely. Three tactics
that have been conjectured and studied are: selecting different foods when avail-
able, regulating assimilation of a given element or nutrient, and excreting excess
elements through metabolism. We focus on one mechanism for the post-ingestive
response, namely differential assimilation of elements. We interpret “differential
assimilation” for an individual consumer in a broad sense, meaning assimilation in
its entire system. We build a conceptual framework for homeostasis maintenance
in the classical approach of mathematical modeling, where, as described in the last
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Figure 5: Elemental fluxes in a herbivore and its energy budget. Each element
is ingested and a fraction is assimilated across the gut wall, the remaining being
egested. The assimilated elements are distributed to structure (total biomass) and
maintenance (respiration and excretion).

section, we ignore many of the intermediate details of precise biochemical processes.
We do not include processes like pH or water control, both of which may play a
role in insect digestion modulation. Also, we assume that the herbivore is in stages
prior to maturity, and so we ignore energy currency explicitly allocated to repro-
duction (although one could consider some allocation to reproduction as built into
production). We also do not consider storage.

In many insect herbivores (as well as other for many other taxa) there are three
nutrients (C, P, and N) that affect growth, metabolism, and the maintenance of
homeostasis. The structure of the model, set up as a chemical reactor, is shown
in figure 5. The herbivore ingests food consisting of specific C:IN and C:P ratios;
some nutrients are egested, and some are assimilated across the gut wall for growth
(production) and basal maintenance (respiration and excretion). For each element,
we have following balance law for the fluxes:

Per capita production = assimilation — respiration — excretion

The model deals with three specific elements in the food and in the herbivore. The
carbon biomass of the consumer is used to determine the per capita amount of C,
N, and P required in the production and metabolism processes. C from the plants
is used by consumers for both growth and maintenance (e.g., respiration through the
loss of COs), while P is used only for production. Although phosphorus is required
in the biochemical pathways for metabolism, it is not generally lost through either
excretion or respiration. N is used for production and it is often excreted as a
by-product of metabolism, but not lost in respiration. Indigestible celluose in the
food is accounted for in the fraction of food not assimilated, and hence egested.
To formulate model equations we use upper case italic letters to denote the
elemental amounts of C, N, and P; thus C = C(t), N = N(¢), and P = P(t) denote
consumer elemental biomasses (in moles); the subscript f on these quantities, e.g.,
Cy = Cy(t), denotes the density (moles per volume) of the element in the food. We
take g as the constant grazing (input) rate (volume per moles of C per time), and we
let ac, ap, and a,, denote the constant (for present), dimensionless assimilations of
the elements. The assumption of a constant feeding rate g is part of the steady-state
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analysis; but the feeding rate can be time dependent. Some herbivores do maintain
constant rates, but others exhibit compensatory feeding and increase feeding when
food quality decreases. Finally, let m denote the constant respiration rate of C , and
k the constant excretion rate for N, both given in time™'. An obvious deficiency in
the model we formulate is that m and k& do not depend upon the food densities (see
Gurney & Nisbet, 1998); however, the model can be extended to cover this case
by letting m and k depend upon food intake. Another simplifying mathematical
assumption is that the N excretion rate is constant and does not depend upon total
C biomass; over long times, where there is significant growth, our assumption is
invalid.
The basic CNP model can be written as

1d 1dP 1 dN N

¢ - car =P G = 9Nran — ks, (6)
Frost and Elser (2002), who consider just the two elements C and P, replace the
ingestion rates gC'ra. and gPya, by saturating functions (Holling type II responses)
of food densities to take account of handling time.

The term homeostasis is used in the sense defined by Kooijman (1995), i.e.,
the composition of the consumer is constant, regardless of the composition of the
ingested food. We call this strict homeostasis; later we relax the constancy condition
and only require homestasis within a restricted tolerance range. At present, for the
herbivore consumer we assume C/P = 8 and C/N = ~. Generally, 8 > 7 because
herbivores contain much more N than P. Eliminating P and N from (6) yields two
conditions for strict homeostasis,

9Crac. —m = BgPray, = ygNyra, — k. (7)

We can introduce two food qualities, @, = Py/Cy and Qn = N;/Cy, which are
the P:C and N:C ratios in the food. Equations (7) define a homeostasis curve in
three-dimensional @,Q nC—space that that can be represented as the intersection
of two surfaces Sp and Sy defined by

gCrac —m _gCran +k—m

Sp: Qp= Sy Qn

B9Cra, v9Cran, ®)
The quantity gCf on the right sides of (8) is a measure of the total quantity of
food ingested, so that equations (8) represent quality vs. quantity surfaces of the
ingested food. Referring to figure 6, a consumer must have a diet that lies on
the curve AB to be in strict homeostasis. Near location B on the curve the food
quantity is high and growth is high; near A, the lower end of the curve, growth is
less. Observe that point A is limiting for growth since the homeostasis curve must
lie in the positive octant, and this lower limitation depends upon the non-excreted
mineral P, since x > w (i.e., m — k < m), and since A lies on the intersection
of the Sp surface with the coordinate plane. This conclusion is consistent with
intuition; if a mineral is excreted (in this case IN), then less C is required in the
food to maintain homeostasis because that mineral is lost to production. So growth
limitation will depend on the non-excreted mineral, where more C will be required
to maintain homeostasis. Below each surface, respectively, the food is limited in
that mineral, P or N. In the region that lies below both surfaces, both minerals are
limited. Above the surfaces C is limiting (the food is high quality but the quantity,
measured in the currency C, is small).
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homeostasis curve

w=(m-k)ia, z=a,lay

Figure 6: The homoestasis curve as the intersection of the quality vs. quantity
surfaces.
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Figure 7: Schematic showing a typical herbivore response to a variable food supply
in CN P space. Differential assimilation confines nutrient path to a tolerance prism
containing strict homeostasis. In the interior, C, N, and P are assimilated at
maximum rates. On a boundary (side or edge) one or more elements is limited.

4.1 Differential Assimilation

A static model does not indicate what will occur under variable environmental
conditions, or what the consumer response is. There are many strategies a consumer
can adopt when faced with food scarcity or low food quality. It often compensates by
altering digestive tactics to meet its nutritional needs (Zanotto et al. 1993, Karasov
& Hume 1997, Woods & Kingsolver 1999, Whelan & Schmidt 2003). Such tactics
may include changing its morphology (e.g., gut size), changing the residence time of
the food to maximize total uptake, or modifying absorption rates (Sibly, 1980, Dade
et al. 1990, Martinez del Rio & Karasov 1990, Simpson & Raubenheimer 1993a;
Yang & Joern 1994; Belovsky 1997, Jumars & Martinez del Rio 1999, Jumars, 2000a,
Whelen & Schmidt 2003, Logan et al. 2002, 2003; Wolesensky 2002; Wolesensky
et al. 2004). However, as we noted, how an animal actually regulates homeostasis
is an open question. There is evidence that some animals modulate digestion by
differential assimilation across the gut wall (Zanotto et al 1993, Woods & Kingsolver
1999). This is the response we model.

Rather than require exact homeostasis where the C:IN and C:P ratios are strict
constants, we assume that an organism will operate within a narrow tolerance zone
defined by

TlQ

C
ﬁfo__ §6+O—7 77€§N§7+67 (9)

where o and € are tolerance ratios. These inequalities define a region in three-
dimensional C'N P space having the shape of a four-sided pointed prism (see figure
7). Our assumptions automatically define a homeostatic ratio for N:P; if a different
N:P ratio is required by the consumer, then the tolerance zone would form a six-
sided pointed prism (with an accompanying more complicated set of assimilation
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rules than we give below for an automatically determined N:P ratio). Initially
(t = 0) we assume the herbivore is in strict homeostasis, i.e.,

c) _ c) _
Po) " NO

where C(0) is the initial carbon biomass of the consumer. Then the elemental
dynamics are governed by the system (6); the calculated values C(t), N(t), and
P(t) define a curve in CNP space called the elemental nutrient path, which is
the trajectory of the consumer’s stoichiometry. As long as the consumer’s C:N
and C:P ratios lie in the ranges defined by (9), i.e., its nutrient path lies in the
tolerance prism, it assimilates all three elements at maximum constant rates, a,
ay, and ay, , to maximize growth. However, when food imbalance forces the nutrient
path to a boundary of the prism (where equality holds in one or more cases in (9)),
absorption of the excess element or elements is reduced so that the ratio remains
in the prism, or on its boundary. For example, when a food is high in C and low
in N, it is of low quality, and the nutrient path will be driven so as to track along
the upper C:IN boundary where assimilation of C is restricted; this is N -limited
growth. Thus the assimilation ‘constants’ a., a,, and a,, in the dynamic equations
(6) become nonlinear functions of the carbon to mineral ratios. Rather than write
out these functional relations specifically as single, complicated formulas, we define
the assimilation rates piecewise in several cases.

To determine the appropriate assimilation rates to remain in the tolerance prism
when one or both ratios reach a boundary, we solve an algebraic problem that comes
from aligning the vector field of (6), at any time, on the boundary of the prism (ei-
ther along a plane or an edge). There are eight cases to consider. The first four arise
when the nutrient path reaches a bounding plane of the tolerence prism, and the
last four cases occur when two planar boundaries are reached simultaneously, i.e.,
an edge is reached. We conveniently represent the dynamics in two 2-dimensional
phase planes, the PC plane and the NC plane. The projection of the 3-dimensional
tolerance prism onto those planes give triangular tolerance zones defined by (9).

We now enumerate the assimilation rules:

Case 1. When the upper boundary of the C:P tolerance prism is reached, i.e., % =
B+o, v—€< % < v + €, the consumer maintains maximum P and N
assimilation rates (a, = ajy, a, = a;,) and restricts its C assimilation rate a.
such that the C:P ratio remains on the boundary. The vector field constraint
dC/dP = 3 + o results in the algebraic condition

gCra. —m —Bio or a.— (B+0)gPra; +m'
gPra; 9Cy

; (10)

which determines the reduced carbon assimilation rate a.. One can verify
that a. < a}.

Case 2. When the lower boundary of the C:P ratio is reached, or % =0—0, y—€e<

% < v + ¢, the consumer maintains maximum C and N assimilation rates

(ac = a}, and a, = a}), while restricting a,. The vector field constraint is

dC/dP = 3 — o, which gives

gCral —m gCral —m

o ()
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Case 3.

Case 4.

Case 5.

Case 6.

Case 7.

Case 8.
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When the C:N ratio reaches the upper boundary of its tolerance zone, but

the C:P ratio remains with in its respective zone, 3 — o0 < & < 8+ o,

P
% = v+ ¢, the consumer maintains maximum P and N assimilation (a, = a
and a, = a}) and restricts a. via

*
P

(gCrac —m)C

(v + €)gNya;, —k+m
gNyra:C — kN '

gCy

=v+4+€ oOr a.= (12)

The final single boundary case occurs when the C:N ratio reaches the lower
boundary of its tolerance zone and C:P remains within its tolerance zone, or
B—0o< % <fB+o, y—e= % The maximum assimilation rates are adopted
for both C and P (a. = a}, a, = a;;) but a,, is limited via the condition

(9Cyal —m)C _9Cray —m+k

=~v—¢€ oOr a,=
gNya,C — kN gNg(v =€)

(13)
The next four cases occur when both ratios C:N and C:P reach the boundaries
of their envelopes simultaneously (i.e., the nutrient path reaches an edge of
the prism). First consider % =fp—o, % = v — . Both ratios allow maximum
assimilation for carbon (a. = a¥), but N and P are limited The conditions
that determine a,, and a, are given by (11) and (13). These two conditions
are independent and yield (13) and (11) for a, and a,, respectively.

When % = 0G+o, % = v+ ¢, assimilation rates for P and N remain maximal
(ap = a}, a,, = a,), but the assimilation rate for C is determined by (10) and
(12). For both the C:P and C:N ratios to remain in their respective tolerance
zones we choose a. to be the minimum of (10) and (12).

When o c
Fzﬁ"’_a—, N:’y_ea (14)

the ratios permit maximum assimilation of P (a, = a;, ), but require a, and
ay, to be restricted. Using the constraints dC/dP = 3+ 0 and dC/dN =y —e¢
we obtain the conditions

(9Crac —m)C

= G Z V2 oy 15
B+o, oNsanC— kN~ (15)

gCra. —m
gPraj;
The consumer can maintain elemental homeostasis by remaining on the two

boundaries given in (14). The algebraic equations given in (15) uniquely
determine the two assimilation rates, a. and a,, given by

e = (B+0a)gPray +m 0 — (B+0)gPray +k
9Cy ’ gNp(y —e).
The final case is o o
D — = . 1
p=h0-0 Nt (16)

The assimilation rate for N is unrestricted (a,, = a}) and we can proceed as
in Case 7. The homeostasis conditions are
9Crac —m (9Crac —m)C

=p0- e = . 17
gPray, p-o gNsar,C — kN Tte (17)
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We uniquely determine assimilation rates for C and P that allow the ratios
C:P and C:N to remain on the boundaries (16). Solving (17) gives

(v +€)gNsa) —k+m (v +€)gNysal — k

¢ gCy ’ b (B—0)gPs

To summarize, the mathematical model consists of the dynamical equations (6)
subject to the constraining relationships defined in Cases 1-8. The nutrient path
C=C(t), N=N(t), P = P(t) in CNP space begins at an initial homoestatic state
and then moves through the tolerance prism. Within the interior of the prism all
nutrients are assimilated at their maximum rates a7, a;, and a,,. If the food supply
drives the nutrient path to the boundary of the prism, then the assimilation rates are
selected to align the vector field of (6) along that boundary so that it does not escape
the prism. Physiologically, the herbivore differentially assimilates; when the food
supply is extreme, it will operate at the edge of its tolerance range, thus limiting its
production, and therefore its growth, in one or more nutrients. Maximum growth
will occur when the food supply is such that the nutrient path remains near exact
homeostasis, i.e., when it most matches the chemical composition of the consumer
itself.

This model is consistent with Leibig’s law of the minimum, which states that
a growth will be limited by whichever single resource is in lowest abundance in its
environment, relative to its needs. Although this rule is normally associated with
plant growth, it is also applied to consumers (e.g., Thingstad 1987, Sterner & Elser
2002, p190ff). In the model above, either one or two nutrients can be limiting.
In the latter case, for example, a food supply low in N and low in P can drive
the nutrient path to an edge of the tolerance region (Case 6) where the consumer
strongly limits its C assimilation to maintain two homeostatic ratios. Thus Leibig’s
rule requires a more general interpretation to allow for multiple limiting nutrients
(see Bloom et al 1985).

4.2 Numerical Simulations

We can turn to simulation to solve the differential equations (6) numerically, sub-
ject to the controls defined in Cases 1-8. Because the model can describe many
scenarios, a large number of computations could be performed to illustrate results
for different food inputs (food qualities, food quantities, grazing rates), different
maximum assimilation rates (depending upon taxa), and different tolerance ratios.
For each variation, total growth in C, N, P, the total amount of excreta and egesta
returned to the environment, as well as the nutrient paths, can be calculated. To
limit space, however, we illustrate how the model performs in a specific case.

Generally, experiments on three-element systems are lacking. In insect herbi-
vores, for example, there is significant support of viewing N as a likely limiting
nutrient (e.g., White 1993); but evidence for P is only now building and data are
scarce (Sterner & Elser 2002). In grasshoppers, for example, availability of excess
bulk food is the norm, but the capacity to find high quality N food is limiting; the
role of P is not known. Generally, C comprises the bulk dry weight of organisms,
and in terrestial organisms P is more variable than N (Sterner & Elser 2002). Thus,
the variability in the C:N ratio is much less than in the C:P ratio. Many factors,
e.g., different habitats, the presence of vacuoles, etc., force plants to have larger
variations in their C:P ratios as well.

For a generic simulation we take median values of terrestial invertebrate C:IN
and C:P ratios catalogued by Sterner & Elser (2002, p 140ff), and typical plant
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Figure 8: Simulation for 96 hours showing the nutrient paths in the two phase
planes. The food supply is fixed with Cy/P; = 263 and Cy/N; = 30.

ratios (p 120 ff). Their tables show large variations in all these ratios. For the
herbivore consumer we take C:P = 73.2 and C:N = 6.4, which leads to an N:P
ratio of 11.4, well within observations in some taxa. The tolerance ratios o and
€ are chosen arbitrarily to be five percent of each ratio. For food we take C:P
= 263 and C:N = 30. The total time of the simulation is 96 hrs, or 4 days. A
typical grasshopper, for comparison, might require about three times this period to
progress through one of its five instars. The other parameter values are provided
in the accompanying table. These average values lead to interesting dynamics and
illustrate the model’s performance.

Quantity Name Value

g grazing rate 0.001 1 (mol C)~! hr~!
m C respiration rate 0.002 hr—*

k N ezcretion rate 0.0002 hr—!

ay C assimilation 0.5

a, P assimilation 0.9

ay N assimilation 0.6

Jé] C:P biomass ratio 73.2

¥ C:N biomass ratio 6.4

The nutrient path is illustrated as two parametric paths in the PC-plane and
the NC-plane (figure 8). One can favorably compare these types of plots to the
experimental plots of Simpson & Raubenheimer (2000, p 29). At first, both C:P
and C:N ratios are high because of high C concentration in the food (low quality).
The nutrient path approaches both upper boundaries where C assimilation becomes
reduced. Over time, however, the C limitation leads to excess P and drives the
nutrient path toward the lower boundary of the C:P zone, while the C:N ratio
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remains in excess, causing the path to track on the boundary on the C:N zone.
After a time the path reaches the boundary of the C:P zone and thus assimilation of
P is restricted. The system continues then to track along the tolerance boundaries
where both C and P are limited (C limited to maintain constant C:IN and P limited
to maintain constant C:P).

With regard to a regulatory physiological approach one could consider iden-
tifying C with carbohydrate and N with protein and plot curves on a protein-
carbohydrate plane. We discuss this in the next section. In this model an organism
responds to an extreme food supply by tracking along the boundaries (rather than
the interior) of its nutrient thresholds. One or more elements will be limited and
total production in that element will be limited, leading to restricted growth. If
the food is well-matched to the herbivore, the path will track in the interior of its
tolerance zones, leading to maximum assimilation of all the elements, and therefore
maximum production. This model fits well, in concept, with the empirical conclu-
sions of Simpson & Raubenheimer (2000). In experiments with locusts they found
target ratios for different nutrients (e.g., protein vs. carbohydrate). This target
ratio must lie in some domain in nutrient space for the organism to survive and
advance to the next instar. Corresponding to a target zone there is a set of food
nutrient ratios where the insect’s nutrient path can reach its target zone. Although
we do not pursue this here, the model has the capability of determining the domain
of food elemental ratios that force the nutrient path into a given terminal set, some
subregion of the tolerance prism.

From a number of simulations one can calculate the total percentage accumula-
tion of C-biomass in the insect after 96 hours for different food qualities measured
by the ratio Ny/Cy of the food. The carbon and phosphorus contents remain un-
changed. Collective simulations show that as the nitrogen content increases, i.e.,
as the food becomes higher quality, the final C-biomass increases up to a limiting
value (33.8%) at about N;/C; = 0.07; it then levels off, and no further growth
occurs because at higher food quality the nutrient path remains in the interior of
the tolerance prism for the 96-hour duration of the simulation.

One important issue is the time scale over which the model and its simulations
are valid. We have given simulations in a short-to-intermediate time length of 96
hours where the food supply and ingestion rate are assumed to be constant. In
reality, over this physiological time scale the food rail could be quite erratic with
intervals of no ingestion and changing food composition, resulting in the animal
constantly switching its nutrient path back and forth in the prism. Over long, de-
velopmental, time scales the food quality can vary significantly over a season; for
example, the nitrogen content of plants can decrease dramatically over the sum-
mer, leading to an increasing C:IN food ratio over time. The model can accom-
modate these variations by inputting g, C¢, P, and Ny as functions of time, or
even including stochastic effects of weather. Yet one qualification remains. Over
developmental time scales, where growth is significant, the linearity and the density-
independent assumptions in the model equations (6) may lose some of their validity.
Over shorter, physiological time scales, the model may perform better in predicting
growth. To adapt the ecological-stochiometric model as a link in the overall nutri-
ent cycling problem in an ecosystem require modifications that account for these
nonlinearities. For example, the N excretion rate k may depend upon total con-
sumer C-biomass. And, the role of temperature, which is especially significant for
insects, must ultimately be included in the model as a factor that affects absorp-
tion rates and metabolic activity (e.g., Wolesensky 2002, Wolesensky et al 2004).
Temperature is included in the regulatory model below.
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To summarize the model, host plants provide complex and variable concentra-
tions of elemental nutrients. Growing herbivores face the problem of having to
manage multiple and changing nutrient needs in a multidimensional and variable
nutrient environment. We have incorporated differential assimilation to control el-
emental homeostasis in a consumer eating food of significantly different elemental
ratios. The model includes variable food input and variable grazing rates. By in-
cluding a tolerance zone around strict homeostatic control, we show that a herbivore
consumer can adjust its assimilation in response to limiting elements in its diet. As
food supply ratios change, independent of the actions of the consumer, assimilation
changes accordingly and relative elemental accumulation shifts. Thus, differential
assimilation can effectively act as a nonlinear control mechanism permitting ele-
mental homeostasis in consumers, as predicted by Sterner (1997). Under variable
conditions the model can predict total production, or growth, and in what regimes
growth is C-, P -, and N-limited.

One important conclusion that can be deduced from several simulations is that
assimilation rates may play an equal role to food supply ratios in maintaining home-
ostasis. Even in the case where the food ratios C:IN and C:P are are exactly those
of the homeostatic state of the consumer, the nutrient path may not track in the
interior of the tolerance zone along the ideal path, but rather track on a boundary
with one or more nutrients limited, thus limiting production. This limitation can
be forced by changing the assimilation rates of the different elements. In insects,
for example, variable assimilation rates may be the rule because digestion processes
depend so strongly upon temperature. One important research question, both the-
oretically and experimentally, is to understand how temperature variations affect
the assimilation rates of various nutrients and elements.

With appropriate qualifications we can view this model as one link in the overall
nutrient cycling process in natural systems. It permits the calculation of secondary
production, based on the composition of the food supply. Coupled with models for
the other components of the nutrient cycle (e.g., DeAngelis 1992), it could form
another piece of this overall stoichiometric process.

5 DIGESTION MODULATION IN GRASSHOP-
PERS

In this section we begin part two of the paper. We show how serially connected
chemical reactors can be set up to effectively capture speicific behaviors associated
with foraging and digestion. The discussion extends the model of Wolesensky et al.
(2004) by expanding a crop-midgut-hemolymph (figure 9) model to include a mul-
tidimensional nutrient space and controls that reflect two compensatory behaviors
that insects employ when faced with nutritionally incomplete food. In particular,
we are interested in the qualitative organism responses with respect to variation of
the nutritional quality of the diet.

The nutritional needs of insects, in particular grasshoppers, are best understood
in the context of a multidimensional nutrient space (Simpson & Raubenheimer,
1993b; Simpson et al., 2002; Lee et al., 2002). To achieve optimal growth it is
necessary for insects to ingest a variety of substrates in different ratios. Ideally,
insects regulate their intake of the various nutrients needed for optimal growth by
simply eating a mix of foods rather than a single food (Bernays & Bright, 1993;
Simpson & Simpson, 1990; Simpson et al, 1995; Waldbauer and Friedman, 1991;
Behmer & Joern, 1993). These include artificial foods that differ in nutrients such
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Figure 9: Schematic of alimentary system with feedbacks. Food is loaded instanta-
neously into the crop where a small amount of reaction and absorption occur as the
digesta moves into the midgut. It passes through the midgut at a speed dependent
on its quality; in the midgut it breaks down and the nutrient products are absorbed
along its length into the hemolymph system. There, nutrients of concentration Pj!
and P} are distributed to the grasshopper’s energy needs; upper and lower threshold
levels trigger the cessation and onset of feeding.
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as protein and carbohydrate (Cohen et al., 1987a,b; Chambers et al. 1995; Behmer
et al., 2001; Lee et al., 2002). For example, given ad-libitum access to pairs of
nutritionally complementary foods (foods that contain nutrients in ratios that allow
an insect to optimally reach their required nutrient levels by alternating between
the foods), Locusta migratoria L. nymphs have been observed to alternate between
them and thus attain highly convergent nutrient intake across different food pairings
(Chambers et al., 1995; Behmer et al., 2001).

For many insects plant foliage serves as their food-source. But plant foliage has
many limitations when it comes to meeting nutritional goals. For example, most
foliage is relatively low in protein and may also be low in digestible carbohydrate
relative to nutritional needs (Bernays & Simpson, 1990). It has been suggested
(Bernays & Simpson, 1990) that the consequences an insect faces when consuming
food with nutritional deficiencies include: tolerate the deficiencies and pay the price
of an extended development, reduced fecundity, and/or increased mortality; leave
and attempt to find an alternate food supply; or compensate for the change. Many
insects have developed mechanisms that allow them to compensate for nutritionally
deficient food.

Two forms of compensation that we will incorporate into the mathematical
model include (Bernays & Simpson, 1990): (i) Eating more or less of the same
food until it meets the limiting nutritional requirement; (ii) Adapt its digestive and
assimilatory physiology so that more or less efficient use is made of the ingested
nutrient. Evidence of compensation in the form of (i) occurring in locust has been
repeatedly reported (Raubenheimer & Simpson, 1993; Behmer et al., 2001; Simp-
son et al., 2002). Results showed that when a near optimal ratio of protein to
carbohydrate was provided in the food, but the concentration was diluted across a
fivefold range by addition of indigestible cellulose, the locusts adjusted their intake
accordingly, eating five times as much of the dilute food as of the most concentrated.
Experimental evidence of compensatory behavior (ii) was presented in Zanotto et al.
(1993). They found that when fifth-stadium L. migratoria were fed foods limited in
carbohydrate, they achieved “unjamming” of the regulatory mechanisms through
selectively egesting lysine, an amino acid known to play a key role in signaling
protein repletion.

Moreover, it has been suggested that both pre- and post-ingestive mechanisms
(compensatory behaviors (i) and (ii), respectively) of nutritional homeostasis may be
coordinated (Raubenheimer, 1992). This type of behavior is illustrated in the case
when an animal stops feeding on a nutritionally unbalanced food due to negative
feedbacks occurring from the nutrient(s) present in excess. This cessation of feeding
could then result in the animal not ingesting sufficient amounts of other needed
nutrients that occur in the food only at lesser levels. This animal would be well
served by selectively increasing the egestion of the excess nutrient (Simpson &
Simpson, 1990).

The mathematical model in the sequel simulates both pre- and post-ingestive
changes that insects employ when faced with suboptimal foods. To understand
the geometry of multidimensional nutrient space a very brief review of nutrient
targets and rails follows. For a full discussion the reader is referred to Simpson &
Raubenheimer (1995).

By viewing an insect as existing within a multidimensional nutrient environment
we are able to define a geometry in which each axis represents a nutrient (or non-
nutrient) compound found in foods. Within this nutrient space lies points which can
be thought of as representing the animal’s nutritional requirements. These points
represent functional targets, and it is expected that animals will have developed
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Figure 10: Plot showing various nutrient targets and their location relative to the
optimal food rail. If an animal could operate at 100% digestive efficiency the intake
target, nutrient target, and uptake target would correspond to the same point in
nutrient space.

mechanisms that allow them to approach these points (Simpson & Raubenheimer,
1996, 2000). We can view targets as either static points, integrated over a given
period of time, or as dynamic trajectories.

We extend the definitions given in Simpson & Raubenheimer (1995) by defining
the uptake target. The uptake target represents the blend of nutrients absorbed
into the hemolymph that will allow the animal to reach its nutrient target (the
animals total nutritional requirement). If an animal were able to operate with
complete efficiency when partitioning nutrients from the hemolymph for growth
and metabolic needs, then the uptake target and nutrient target would be identical.
The schematic in Figure 10 represents the relationship between the various targets.
The distance that the uptake and nutrient target are from the intake target depends
on how efficiently the animal processes ingested food.

Foods are mixtures of various nutrient and non-nutrient compounds and thus
represent lines in our nutrient space that begin at the origin and extend into nutri-
ent space. Simpson & Raubenheimer (1996, 2000) use the term rails for these lines
because if an animal is confined to eating a single food then its is forced to ingest
the ratio of nutrients that this food contains and thus stay on this single trajectory
(or rail) in nutrient space. The animal can move along the rail into nutrient space
by continuing to eat more of this food, and can get off this rail only by switch-
ing to another food or differentially utilizing nutrients post-ingestively (Simpson &
Raubenheimer, 2000).

We can also use the information provided by our nutrient space to determine
the animal’s current nutritional state. The vector originating at the point that
represents the animals current nutrient state and ending at the animals intake target
indicates which nutrients need to be ingested if the animal is to reach its intake
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Figure 11: Vector from current nutritional state (A) to target (B) defines the nu-
tritional quality of the optimal food (i.e. food that allows the insect to proceed
directly to target).

target (Figure 11). If a food allows the animal to proceed directly along a rail to
the intake target, then that food is defined to be an optimal food.

The following mathematical model is designed to simulate the behavior of an
animal when confined to consuming a single suboptimal food. Although it is not
possible for an animal to reach its uptake target when presented with a suboptimal
food, it is important to note that it may still progress towards its various targets
by making compensatory changes in its intermeal behavior and post-ingestive uti-
lization of nutrients. The form of the post-ingestive compromise should depend
on the relative weighting given by its regulatory systems to the nutrients involved
(Simpson and Raubenheimer, 2000). Using a chemical reactor model for digestion,
we invoke a post-ingestive control that allows the animal to proceed toward their
uptake target by limiting the absorption of the nutrient that is in excess. We also
make a pre-ingestive change by having the intermeal delay shortened if one of the
nutrients occurs at a diluted level.

We now consider the case where the ingested food contains two substrates that
react with enzymes to produce two nutrient products. That is, S;4+ E; — Nj
and Sa+ E; — Ny, We include a control to simulate post-ingestive changes,
and we use Michaelis-Menten kinetics for the uptake of nutrient products into the
hemolymph. Superscripts denote the structure being considered (c - crop, m -
midgut, h - hemolymph) and subscripts denote the quantities associated with the
reaction (i =1 or i = 2).

5.1 The Crop

The function of the crop in the model is twofold. First, the crop regulates the quan-
tity of food ingested during each meal. We assume a fixed volume of food Vj enters
the crop each time a meal is consumed, and then empties at a rate Q,, dependent
upon food quality and the external temperature. Second, there is substrate reac-
tion and very limited nutrient absorption in the crop; as is the case with for many
insects, the degree of reaction and absorption is small compared to that occurring
in the midgut (Srivastava, 1973; Wigglesworth, 1984). We model the crop as a
semi-BR emptying at volumetric flow rate @,,, which is determined in the model
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at the time the nth meal is ingested. The flow rate @,, remains constant until the
crop empties, at which time it becomes 0; then at the instant ¢t = ¢,,41, when the
(n 4+ 1)st meal is ingested, the flow rate @1 is again determined and the cycle
repeats. The determination of the flow rate @,,, which depends upon food quality,
is discussed in the sequel. For substrates we use W, and K¢, i = 1,2, to denote the
Michaelis-Menten constants for the maximum reaction velocity and concentration
to half maximum velocity (half-saturation), respectively. Likewise, Jf and M¢, 1,2,
denote the Michaelis-Menten constants for the absorption of the nutrients across the
crop lining. Letting t. = V5/Q,, (time for crop to empty), we apply mass balance
to both substrate and nutrient in the crop during the time interval (¢, t,+1) to
obtain

as; WEss (0-00) . an
S = ()2 s =St vo#o. ()
SE) = 0.V() =0, (19)

dt K¢+ S M¢ + N¢

ani K WiS? )-( JiNE )]QM NE(t,) =0, V() # 0(20)
Ne(t) = 0, V(t)=0, (21)

V(t) = ‘/O*Qn(tftn)a tn <t <t (22)
V() = 0, te<t<tn. (23)

Observe that both the reaction and absorption terms depend on the concentra-
tions as well as the external temperature 8 = 6(t). It is well-recognized that temper-
ature plays a vital role in the thermal regulation of digestion in insects (Hoffman,
1984; Karasov, 1988; Chappel & Whitman, 1990). We incorporate temperature
into these rates using Q19 = 2 (i.e., rates double for every 10°-temperature increase;
Hoffman, 1984; Karasov, 1988;). Although Q19 may vary significantly for different
processes (Harrison & Fewell, 1995; Gilbert & Raworth, 1996), for simplicity we
assume it to be equal to 2 for all processes. The daily temperature cycle is mod-
eled by the periodic function 6 = 0y + Ap cos(wt), where w = 7/12 and Ay is the
amplitude variation around the value 6.

5.2 The Midgut

We model the midgut as a PFR and obtain through mass balance the following
coupled system of reaction—advection equations governing the concentrations of the
substrate and nutrient as the bolus travels through the midgut
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0, N™(0,t) = NE(t). (27)
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We have included a control R; in equation (26) that depends on the ratio of the
nutrient products, N} and N, in the hemolymph at the time a meal is consumed.
It operates under the assumption that the optimal intake of the two nutrients is
a 1:1 ratio, as is approximately the case for protein and digestible carbohydrate
in locusts (Chambers et al., 1995), but is readily adjustable for other required
homeostatic ratios. We use the simple relationships

Ri={ . : (28)
Ny AN () > NE(ta),
and
Lo i NJ(ta) < Ni(tn),
Ro={ _ (29)
MR, 1N () > NP ().

5.3 The Hemolymph

The two nutrients products N; and Ny are absorbed into the hemolymph from
both the crop and midgut. Treating the hemolymph as a CSTR and applying mass
balance, we obtain equations for the nutrient concentrations Nj* and N} in the
hemolymph. For N} we have
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We note that the inclusion of a non-local (integral) term is a result of absorption
ocurring over the entire length of the midgut.

5.4 Feedbacks and flow-through speed

There is strong experimental evidence that nutrient titers in the hemolymph pro-
vide nutrient-specific influences on feeding behavior in several species of acridids
and caterpillars (Abisgold & Simpson, 1987; Simpson & Simpson, 1990, Simpson &
Raubenheimer, 1993a). From empirical evidence Simpson & Raubenheimer (1993a)
conclude that hemolymph parameters, such as nutrient titers, are linked with the
gustatory responsiveness of the insect. In particular, they noted that: (1) insects
with low concentrations of particular nutrients in the hemolymph (nutrient defi-
cient) were more likely to locomote and forage for food than those insects that are
nutritionally replete, and (2) high concentrations in the hemolymph of certain nu-
trients will inhibit further feeding on food containing that nutrient. We integrate
these observations into the model by defining upper and lower thresholds of the
nutrient concentrations in the hemolymph that either increase or decrease the gus-
tatory responsiveness of the animal. We extend the idea presented in Wolesensky
et al (2004) to two nutrients by assuming upper thresholds, U}, and U?, and lower
thresholds, Ul1 and Ulz, for the concentration of nutrients N; and Ny, respectively.
We then use the following rules to determine the gustatory response in the model:



Chemical Reactor Models 31

1. If both nutrient concentrations in the hemolymph exceed their respective up-
per thresholds (U}, UZ2) then the gustatory response is turned off (the simu-
lated insect will cease to eat).

2. Gustatory response will remain off until the time when one of the nutrient
titers in the hemolymph drops below its lower threshold (U, ll, U 12). Then gus-
tatory response is restored and the simulated insect is now hungry.

3. Feeding responsiveness will remain high until both nutrient concentrations
again exceed their upper thresholds.

Rule 3 allows for feeding to continue until the upper threshold of the limited
nutrient is reached in the hemolymph, regardless of how much excess nutrient is
consumed (Simpson & Raubenheimer, 1995). Note that the hemolymph feedback
described has the effect of delaying the onset of the next meal if high quality food is
ingested. This is consistent with experimental work involving grasshoppers (Yang
& Joern, 1994; Simpson & Raubenheimer, 2000). During the period where nutrient
levels are satisfactory, in between the threshold values, we assume that quiescent
or foraging behavior may be occurring. Foraging behavior is simulated by select-
ing a foraging time, which is an exponentially distributed random variable R.; i.e.,
Pr(R. <t) = 1—exp(—nt) (e.g., see Gross, 1986), where n~! is the average foraging
time. We incorporate dietary dilution of a substrate in the food by using a dilution
factor Dy that depends on the ratio of the limited substrate concentration (corre-
sponding to limited nutrient in the hemolymph) in the suboptimal food compared
to the concentration of this substrate in the optimal food. For example, suppose it
is determined that a food containing 14% protein and 14% digestible carbohydrate
is optimal, but the animal is presented with a single suboptimal food containing
only 7% protein and 14% digestible carbohydrate. In this case we would then have
Dy = % = .5 and the foraging delay would then be half of what is required for
optimal foods. This behavior has been exhibited by a variety of insects, including
grasshoppers. McGinnis & Kasting (1967) reported that when fifth-instar nymphs
of Melanoplus sanguinipes(grasshoppers) were fed a diet of wheat sprout meal di-
luted to various degrees with cellulose, they adjusted according to the amount of
dilution. They observed that when these grasshoppers had the sprout meal diluted
by two-, four-, and eight-fold, consumption over the first 5 days of the stadium
increased by 2, 4, and 7 times respectively. The change in food consumption was
not due to larger meals, but instead the compensation came from the insects eating
the same size meals more frequently (Simpson & Simpson, 1990).

We make flow through speed dependent on food quality (Yang & Joern 1994),and
determine the speed of material through the midgut using the concentration of the
substrate that corresponds to the limiting nutrient (the nutrient which the animal
is deficient). For example, if at time t,, the concentration of nutrient NJ' is less
than N} we use S¢ = S¢(t,,) when computing the contribution of the n* meal to
the midgut speed. Thus S: denotes the substrate concentration that corresponds
to the limiting nutrient at the time that the n!* meal is eaten. We formulate the
contribution of the n*"* meal in determining the midgut speed by

Lwm

Fn:F v) = n T et

(31)

Here w, represents the weight given to the n'® meal, while W™ and K™ are the
midgut Michaelis-Menten constants for the substrate S¢. The midgut speed is then
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computed using a weighted average of the meals that still remain in the midgut at
the time the n'® meal is consumed; that is

Chn = [wo F'(Sy) + wn1 F(S7 1) + wa—2F (S, _5) + .. + wn— i F(S5_1)]. (32)

This formula is purely theoretical in nature, but it exhibits the response observed
empirically (Yang & Joern, 1994) that high quality food passes through the midgut
at a slower rate than low quality food. This formula also has the advantage
that it takes into account the “digestibility” of the substrate by incorporating the
Michaelis-Menten constants and incorporates the nutritional value of meals remain-
ing in the midgut at the time the current meal is consumed. The choice of (31) was
made to correspond to the time it would take for the entire substrate to be con-
sumed by reaction if the reaction rate was to proceed at maximum rate (WW™) for
the entire length of the midgut. The reader is referred to Wolesensky et al (2004)
for an equation of midgut speed that is derived to fit the empirical data presented
in Yang & Joern (1994) for protein. We use a theoretical model in this paper since
our goal is to only examine the qualitative response of the model under various food
scenarios. Also, the nutrients referred to in the sequel are generic.

5.5 The Scaled Model

To reduce the number of parameters in the model, and thereby simplify it, we
nondimensionalize. The dimensionless variables are defined by

[ V/V07 Sf = SiC/Smaxy nzc = NiC/Smaxa qn = Qn/(ACave)a
= an/smax,ngn :Nim/Smaxa Cn :Cn/clwe’ y:x/L,
nf = Nih/Smaxa T = t/(L/Cﬂﬂ)e)’ T= 9/90

S

N

In each case, the dimensionless variable is defined by the original dimensioned vari-
able divided by a scale representing a characteristic value for that variable. For
Smax We use the maximum of the two substrate concentrations that are possible
in the ingested food, and Cgye is computed by F(S,), where S,, represents the
combined average of the two substrate concentrations that are being considered.
For example, if a food contains 14% protein and 7% digestible carbohydrate, then
Sp = 0.105.

In dimensionless form, equations (18)—(23) for the substrates and nutrients in
the crop become (i = 1,2)
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where the dimensionless constants are given by
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Under the same scaling, equations (24)—(27) for the midgut are transformed into
the dimensionless equations

s} s} afrsim 0 _
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or +08y (ﬂim—l—s;" ’ (38)
S:-n(y, O) = 0, s:n (O’ T) = SE(T)a (39)

onj" on" asi vt (60/10)(T—1)
- = — i 2 , 40
or te y [(,@Z’W—s;” P+ xr (40)
nzm(y,()) = 0, n;n(()ﬂ-) = n$<7)7 (41)

with dimensionless constants
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Finally, equations (30) for the nutrient concentrations in the hemolymph are given
in dimensionless form as
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with dimensionless constants given by
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The scaled controls for simulating post-ingestive changes are given by
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while the scaled upper (u}) and lower (uf) thresholds for the hemolymph concen-
trations are

u}b = Ué/Smax, u} = Uli/S’max. (46)

The scaled formula for the computation of digesta flow-through speed is given by

cn = f(sn), (47)
where m
Fls5) = wn—r (48)
s
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a™ L and g™ = K—

CCLUCSIH&X max



34 W. Wolesensky & J.D. Logan

The scaled exponential random variable for the intermeal interval is
Pr(R. <7)=1—exp(—k7), k= ML/Qave)- (49)

In summary, equations (33)—(43) along with the feedbacks (44)—(49) give the
complete scaled version of a chemical reactor model for insect digestion involving
two substrates that react with enzymes to give two nutrient products. The model
allows for the existence of a post-ingestive control that acts to reduce the absorp-
tion of the non-limiting nutrient across the gut wall. While the model does not
lend itself to analytic techniques, it is quite tractable numerically. We use finite
difference methods for the partial differential equations, a Runge-Kutta method for
the ordinary differential equations, and the trapezoidal method to approximate the
nonlocal term.

6 SIMULATIONS

We next use the model to determine the location of nutrient targets and simulate
the behavior of an insect faced with no alternative but to ingest a single suboptimal
food.

6.1 Locating the Targets

Earlier we discussed the existence of the nutrient target, growth target, intake
target, and uptake target. Estimating the position of these targets is generally
accomplished in one of three ways (Raubenheimer & Simpson, 1993; Simpson &
Raubenheimer, 2000): (i) functionally, by adding a fitness axis to nutrient space
and deriving fitness criteria by measuring performance and reproductive variabil-
ity; (ii) by asking the animal to defend target points in nutrient space and then
assuming that these points of homeostasis represent maximum fitness; (iii) use
measurements of growth, respiration, and wastage to find the location of the tar-
gets. For a thorough discussion of identifying the location of the various targets the
reader is referred to Raubenheimer & Simpson (1993). By definition,

NT =GT + M, (50)
NT
T=— 1
T =" (51)
and NT
IT = — 52
s (5)

where NT, GT, IT, and UT represent the coordinates of the nutrient target, growth
target, intake target, and uptake target, respectively. We use M to represent the
nutrients contribution to other metabolism, E the efficiency with which nutrients are
utilized from the hemolymph, and U the overall efficiency with which the nutrient
is utilized once ingested. Equation (50) is a statement that the ingested nutrients
must meet the demands of the animal’s energy budget for growth and metabolism.
Efficiency of nutrient utilization is built in the model through the kinetics for both
the substrate reaction and nutrient absorption terms in the crop, midgut , and
hemolymph equations. We remark that in the theoretical case of an animal having
complete nutrient utilization efficiency (U = 1, E = 1), the uptake target, nutrient
target and the intake target correspond to the same point in nutrient space.
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The absorption terms in the hemolymph equations (30) represent the growth
and metabolic contributions to an animal’s energy budget. Working under the
assumption that we know what ratio of nutrients constitute an optimal food, our
model allows us to make a priori estimates for the various targets. This is of
theoretical significance since an a priori estimate for these targets is generally not
possible.

In the remainder of this section we use the model to predict the location of
the uptake target and then examine the model’s response to feeding on a single
suboptimal food. In our model we have uptake into the hemolymph occurring in
both the crop and the midgut. For the nutrients N; and Ny we compute at time
T = Te,

Te [t mpm epe o(T—
total uptake for N, = / [/ (%) X r;dy + < ;Yl e “ﬂ 2%% dr.
0 0o \Pi Tn; 0§ + n§

(53)
We may simplify these equations by ignoring contributions from the crop. This
assumption is motivated by the short residence time of food in the crop and the
small values for the kinetics that occur there (7§ << /™). Removing this uptake
term, equation (53) becomes

Te [l mpm
total uptake for N, = / [/ (%) X T dy] 2(0/10)(T=1) g, (54)
o Lo \pi"+mn

If we have a priori knowledge of the composition of nutrients in an optimal food,
we can use the model to predict the location of the uptake target at any time. This
can be done by numerically solving the model using the assumption that an optimal
food is being ingested for a given period of time. By computing the total uptake
for the nutrients during that time we will be able to estimate the uptake target. In
the sequel we present results pertaining to grasshoppers and locusts, but the model
could be adjusted for other animals.

6.2 Results, Predictions, and Discussion

In this section we will often refer to the two nutrients as protein and carbohy-
drate because these are two of the major macro-nutrients for grasshoppers; but the
discussion readily applies for other nutrients or elements. For the composition of
the optimal food we use a food containing a balanced ratio of protein to nitrogen
(Chambers et al., 1995; Simpson & Raubenheimer, 2000) with the concentration of
each being 14% dry volume. The numerical model will simulate 6% days. We use
the following parameter values:

A = 0.47 mm? Ay = 25° Ay = 10°

W™ =1mg/ml/hr | W =0.01 mg/ml/hr | K™ = 3.86 mg/ml
J¢=0.1 mg/ml//hr | A} =7.85/hr K{ = 3.86 mg/ml
Vo =90 pl U} = 0.08 mg/ml U} = 0.06 mg/ml
L =20 mm Smax = 0.23 mg/ml VI =180 pl

J™ =1 mg/ml/hr M¢ =4 mg/ml/hr M = 4 mg/ml
d; = 0.12 mg/hr Qave = 5 mm/hr way = 1/k

To predict the location of the uptake target, we simulate a no-choice assay where
the insect has continuous access to a single optimal food. We let the numerical model
simulate 156 hours (6% days), during which we keep track of the total uptake of
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both nutrients from the midgut into the hemolymph. The point in nutrient space
that corresponds to these totals then serves as the uptake target. In general, the
uptake target and optimal food composition are not static, but change in time. For
grasshoppers the uptake target changes with respect to the length of time that is has
spent in its current stadium (instar) (Simpson and Simpson, 1990). For example,
the intake target and composition of an optimal food for a grasshopper will depend
greatly on whether the insect is trying to gain nutrients for structure (greater need
for protein) or if the goal is to meet energetic requirements (increased need for
carbohydrates) (Simpson & Raubenheimer, 1993b).

We assume that the kinetics governing the substrate reactions are the same
for both S; and So. We make a similar assumption for the kinetics governing the
absorption of N7 and Ns. This simplification allows for both the intake target and
uptake target to be located on the same rail. We make note that for most insects
dietary protein is utilized less efficiently than digestible carbohydrate (Zanotto et al,
1993; Waldbauer, 1968), thus we would expect the intake target and uptake target
to be located at different positions in nutrient space. Currently we are interested
in the comparative analysis of the model when the parameters for food quality are
varied. This consists of performing a simulation under optimal food conditions
and then comparing it to simulations when suboptimal values are used for the
food parameters. The comparison involves examining what effect the post-ingestive
control and dilution factor have on pre- and post-ingestive behavior. For this reason
the choice of the parameters used in the kinetics in the model is purely speculative,
and we reiterate that to accurately compare the model’s response under various
food qualities it is adequate that the parameters simply remain the same for each
simulation.

The model makes clear predictions concerning the effect that temperature, post-
ingestive control, and food quality have on eating and intermeal behavior. Figure 12
provides a comparison of the volume of material in the crop for the three different
scenarios: optimal food, suboptimal food with no pre- or post-ingestive compen-
sation, and suboptimal food with pre- and post-ingestive compensation. For a
suboptimal food we assume a composition of 14% S; and 7% S,. Figure 12a is a
simulation for the response of an insect when presented with a single optimal food.
The model predicts that the insect will eat approximately 7 times per day, with the
insect being approximately twice as likely to eat during periods of above average
temperature (Figure 12d shows the temperature cycle). This corresponds nicely
to data indicating that grasshoppers are twice as likely to eating during periods
of light (higher temperatures) as compared to periods of dark (low temperatures)
(Simpson & Raubenheimer, 2000). Figure 12b is the model’s prediction in the case
of a suboptimal food with the assumption that no pre- or post-ingestive mechanism
is being employed by the insect. Now the model predicts the ingestion of approxi-
mately 9 meals per day (an approximate increase of 28%). The clusters of feeding
activity around periods of higher temperature again illustrates the sensitivity of the
model to temperature. The enhanced feeding is a result of the model being unable
to exceed the upper threshold for nutrient No (Figure 13) in the hemolymph; thus
the intermeal interval is singularly determined by the random variable used to sim-
ulate a foraging delay. The effect that the pre- and post-ingestive mechanisms have
on feeding behavior when the insect is presented with a single suboptimal food is
shown in Figure 12c. In this case we predict the insect to ingest 12 meals per day,
an increase of 70% over the optimal case. This result correlates well with data in-
dicating that when faced with food containing a nutrient diluted to half its optimal
level, grasshoppers compensate by ingesting approximately twice as much food, and
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Volume of Material in Crop

1 Optimal Food Figure a
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Figure 12: This figure shows the volume of material in the crop. The horizontal axis
represents time in hours and the vertical axis in the top three figures is the scaled
volume. Figures 12a, 12b, and 12c correspond to the three cases being considered.
Note the increased consumption that is predicted for feeding on a suboptimal food.
Figure 12d allows for comparison with the daily temperature cycle.
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Optimal Figure a

Lower threshold

Scaled haemolymph nutrient concentration

24 a8 72 (hours) 96 120 144
Suboptimal, with control Figure b

Scaled haemolymph nutrient concentration

o 24 a8 72 (hours) 96 120 144
Suboptimal, no control Figure ¢

Scaled haemolymph nutrient concentration

(hours)

Figure 13: Graphs of nutrient levels in the hemolymph. The vertical axis represents
the scaled nutrient concentrations. The optimal case is shown in figure a. In the
optimal case both nutrient levels are the same since we have used identical kinetics.
In figure b we see the effect of the control on nutrient levels in the suboptimal
case. Figure c represents nutrient titers for a suboptimal food when no pre- or
post-ingestive controls are employed.
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they accomplish this by eating meals of the same size more frequently (Simpson &
Simpson, 1990).

In the model we have allowed for the frequency of meals to be influenced by two
factors: an exponential random variable that simulates the intermeal delay due to
foraging behavior, and nutrient levels in the hemolymph. The predicted nutrient
concentrations in the hemolymph are shown in Figure 13. Superimposed at the top
of each plot in Figure 13 is the imposed temperature cycle. Figure 13a represents
the nutrient concentrations under the assumption of an optimal food. In this case
the titers for both nutrients are the same since we assumed identical kinetics and
that the optimal food contains equal concentrations of the two substrates. We
could easily adjust the model for other kinetics, but the main goal is to examine
the qualitative changes predicted by the model for various inputs. In that regard
we make note of the different predictions for the hemolymph concentrations given
in Figures 13a and 13b. In Figure 13b the limiting nutrient never exceeds the
upper nutrient threshold u%, and thus the gustatory responsiveness of the insect
is predicted to remain continually high. This leads to the compensatory behavior
demonstrated in Figure 12c of increased eating. This predicted behavior has been
observed in the laboratory for various insects (Simpson & Simpson, 1990; Simpson &
Raubenheimer, 1993a; Chambers et al, 1995), and again we see congruence between
the behavior predicted by the model and that of actual insect behavior. Upon
comparing Figures 13b and 13c we clearly see the effect that the post-ingestive
control is having on the predicted nutrient concentrations in the hemolymph.

There are two marked differences between Figure 13b (control) and Figure 13c
(no control). The first is that the post-ingestive control is definitely effective in
limiting the uptake of the excessive nutrient into the hemolymph. The peak levels
of n? for the control case (Figure 13b) are consistently between 15% to 20% lower
then the peak levels for n/ corresponding to the no control case (Figure 13c). This
difference is magnified when we take into account that, in the control case, the
model predicts the ingestion rate is approximately 30% higher (due to the dilution
factor) than when no control is employed (12 meals/day compared to 9 meals/day).
The second major difference is in n%, the concentration levels of the limited nutrient.
The titer of the deficient nutrient Ny is approximately 30% higher in the control
case than in the no control case. This is caused by the increased ingestion rate in the
control case. When taken together, these differences give strong evidence that the
model simulates two desired compensatory behaviors: a post ingestive compensation
that limits the absorption from the midgut of the nutrient that is excessive in the
hemolymph, and a pre-ingestive compensation by increasing the ingestion rate in
order to elevate the titers of the limited nutrient in the hemolymph.

The model also gives considerable insight into the role of temperature in insect
digestion. In Figures 13a, 13b, and 13c we see correlation between high temper-
atures and high nutrient concentrations in the hemolymph. This dependence on
temperature is further illustrated in Figure 14 where we see the cumulative uptake
of nutrient N7 and Ny into the hemolymph for each of the three cases. The cy-
cles of rapid uptake appear to have a period of 24 hours. This corresponds to the
warmest times of the daily temperature cycle, which in turn correspond to intervals
of elevated hemolymph titers (Figure 13). Figure 14 also provides evidence of the
reliability of the numerical model in that each result continues to be consistent with
the previous results. For example, the time intervals with the highest ingestion rate
(Figure 12) correspond with elevated nutrient concentrations in the hemolymph
(Figure 13), which in turn correspond to the intervals of highest uptake (Figure
14). We also observe numerical consistency in the results for the three scenarios
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Cumulative Uptake Totals
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Figure 14: Cumulative uptake total for nutrient uptake in each of the three cases.
The effectiveness of the controls are clearly seen when comparing the control and
no control totals.

that are considered. That is, in Figure 14 we see the expected hierarchy in the
cumulative uptake of the two nutrients. For IN; the highest uptake occurs in the
case of the suboptimal food with no control, followed by suboptimal with pre- and
post-ingestive controls; the lowest uptake occurs in the optimal food case, while for
the limited nutrient Ny we see the opposite hierarchy (Figure 14).

We now use the cumulative uptake for the optimal food case to infer a prediction
for the location of the uptake target (per the given parameters). The uptake target
corresponds to the cumulative total for the optimal food given in Figure 14, and it
lies upon the rail defined by the optimal food. Figure 15 shows the predicted location
of the uptake target after 6% days to be (2.6, 2.6) (designated by x). We also show
in Figure 15 the rail corresponding to the suboptimal food. The point (3.5, 1.7)
(designated by z) on this rail corresponds to the predicted point in nutrient space
that the animal would arrive at if it fed continually on this suboptimal food for
6% days and employed no pre- or post-ingestive compensatory behavior. The point
(3.2, 2.1) (designated by y) is the predicted location in nutrient space when feeding
on the suboptimal food for 6% days, but employing the post-ingestive control and
dilution factor. In all three cases the combined total uptake for the two nutrients is
approximately the same. This pattern of eating behavior has been demonstrated by
the desert locust, S. gregaria (Simpson & Raubenheimer, 2000). Animals exhibiting
this form of compromise are said to use the equi-distant rule for feeding.

We get a better view of the uptake adjustment created by post-ingestive control
in Figure 16. Here we show an exploded view near the origin of Figure 15. The
point C represents the first adjustment made by the control and is made at the
time the second meal is consumed This is equivalent to “jumping” rails through
post-ingestive compensation in order to avoid “jamming” of the regulatory system.
Although not as significant as the first adjustment, point D is the location of the next
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Figure 15: Uptake rails for the optimal and suboptimal food are shown. The plot
of the suboptimal with controls illustrates the adjustments that the post-ingestive
control and dilution factor are having on nutrient uptake. The optimal food rail
represents a straight line with slope 1, while the suboptimal rail with no control is
also a straight line with slope 1/2.
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Figure 16: Exploded view of figure 15. Point C represents the adjustment of the
post-ingestive control at the time the second meal is consumed. Point D shows the
effect of the control when the third meal is ingested.
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change in the control factor, and it occurs at the time the third meal is ingested.
Subsequent adjustments of the control factor continue to occur, but on a much
lessor scale; this indicates that the simulated ratio of nutrients in the hemolymph
is reaching an equilibrium. Working under the assumption that the model is accu-
rately describing the digestion process, this indicates that there could be constraints
on the post-ingestive response to feeding on a suboptimal food. Although insects
exhibit remarkable compensatory behavior for surviving on suboptimal foods, there
is clearly a lower limit to the food quality that can be tolerated. McGinnis & Kast-
ing (1967) showed that when the diet of fifth-instar nymphs was diluted to 1/16-th
of the control diet, the compensatory ability of the nymphs were exceeded and high
mortality resulted. Future work with this model includes examining the response
to various ratios.

7 CONCLUSIONS

This work lays the framework for using chemical reactors to understand the link
between insect foraging and digestion behavior in the context of a regulatory phys-
iology in a multidimensional nutrient space. In comparing the results from three
different scenarios the model produces results that simulated observed qualitative
insect behavior. The model simulates the eating behavior of insects, in particu-
lar grasshoppers or locusts, when faced with the dilemma of meeting nutritional
goals on a single suboptimal food. Laboratory experiments confirm that grasshop-
pers will vigorously defend certain nutrient and growth targets when faced with
less than desirable foods (Simpson & Raubenheimer, 1995; Chambers et al., 1998).
This empirical evidence strongly suggests that insects have mechanisms that allow
them to compensate both pre- and post-ingestively for deficiencies in a suboptimal
food. We have modeled the pre-ingestive mechanism by a dilution factor Dy that
acts to shorten the inter-meal interval, and the post-ingestive compensation by a
control factor that limits uptake from the midgut of the excess nutrient.

By invoking these mechanisms the numerical model succeeded in simulating the
qualitative differences in behavior that have been observed experimentally. These
include increasing ingestion by approximately a factor of two when the limited nu-
trient is half its optimal concentration, increasing egestion of the excess nutrient
by limiting its absorption, and simulating the observed uptake behavior of animals
who use the equi-distance rule when feeding on suboptimal food. Agreement of
the model with observed laboratory behavior supports evidence that animals pos-
sess compensatory mechanisms that allow them maintain nutritional homeostasis
for a variety of food composition. The model predicts strong dependence upon
temperature in the regulation of all aspects of behavior. Special note is made of
the correspondence between elevated nutrient titers in the hemolymph and elevated
temperature, which implies that most nutritional gain occurs during the daylight
hours. Additionally, the model may be of value in making predictions regarding the
effects that global temperature changes have on insect foraging and digestion.

The model also has the potential to predict a priori the location of the uptake
target if the nutrient composition of the optimal food is known. This requires
estimation of the many parameters used in the model for the various kinetics. Once
the parameters are estimated, the model can be used to evaluate the efficiency of an
animal’s digestion system. This may be accomplished by comparing the predicted
amount of nutrient ingested to the predicted amount of nutrient uptake. The success
of the model in making accurate, quantitative predictions depends greatly on the
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accuracy of the parameter values. Future refinements of the model include allowing
for radial dependence in the composition of digesta in the midgut (as in Woods and
Kingsolver, 1999), parameter estimation, and temperature comparisons.
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